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Abstract—Usage of concentrated windings in electrical 

machines is a well known topic, yet there has not been presented 
a direct approach on winding factor calculation. In this paper a 
method for directly calculating the winding factor, without doing 
a winding layout first, is proposed. A feasible region for the 
number of slots per pole per phase for machines with 
concentrated windings is also presented. Effects on the odd and 
even number of slots have on both the winding space harmonics 
and the air gap force is discussed. 
 

Index Terms— axial flux machines, concentrated winding, 
permanent magnet, radial flux machines 

I. INTRODUCTION 
HE aim of this paper is to approach calculation of the 
winding factor for permanent magnet, PM, machines with 

concentrated windings at a different angle than previously 
proposed in [1]-[4]. The presented approach yields for both 
axial flux permanent magnet, AFPM, and radial flux 
permanent magnet, RFPM, machines with concentrated 
windings. The proposed method approaches the winding 
factor by calculating the distribution factor and coil-span 
factor, similar to the ones proposed by Gieras et al. [5] for 
three phase windings distributed in slots and Say [6] for 
fractional slot windings. The proposed approach does not 
require having an in-depth knowledge of the winding layout 
unlike the methods presented in [1]-[4]. Analytical 
expressions of factors: kw, winding, km, distribution and ke, 
coil-span will be presented. Comparison of different winding 
factors, spanning from fundamental to 49th winding space-
harmonic, for different number of slots per pole per phase, q, 
will be presented. In addition FEA, Finite Element Analyse, 
calculations of resulting force fields of different slots and pole 
combinations will be presented. 
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II. THEORETICAL EQUATIONS 

A. Winding factor calculation  
Number of slots per pole per phase is common to denote as q 
in electrical machine design. When q is larger than or equal to 
1 the winding is called distributed, distributed windings can be 
divided into integer (q an integer) and fractional (q a fraction) 
windings. Machines designed with concentrated windings, 
where q<1 will always be fractional. They follow the same set 
of rules as fractional slot windings. q is found from:: 

 s

ph m

N
q

N N
=

⋅
 (1) 

Where Ns is number of slots, Nm is number of poles and Nph is 
number of phases. Being a fraction q can be expressed as: 

 zq
b

=  (2) 

Here the numerator z is the N’
s/Nph number of coils in a N’

m 
pole unit, expressed as denominator b, z is found from: 
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gcd is the greatest common divisor between the number of 
slots and the product of number of poles and number of 
phases. 
 
(3) only applies for machines with all teeth wound with 
concentrated coils. Having concentrated coils wound around 
every second teeth or iron powder cores makes it more 
convenient to rephrase (3). Instead of expressing z in terms of 
the slot number, the number of coils, Nc, is introduced. 
Having a machine with all teeth wound will result in Nc = Ns, 
whereas a machine with alternate teeth wound would have Nc 
= Ns/2. Taking this into account (3) becomes: 

 
gcd( , )

c

c m ph

N
z

N N N
=

⋅
 (4) 

In this work Nph=3 with a phase spread, σ, equal to 60° is 
assumed, since this phase spread will ensure the best possible 
distribution factor for three phase machines. 
 

1) Distribution factor 
Distribution factor, where n is the winding space harmonic 
order and σ  is phase spread angle equal to 60°, is found from: 
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This will basically be a rewrite of the way Say [6] presents the 
distribution factor for fractional slot windings. 
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Fig 1 Chording angle ε when a) coil span is shorter than pole 
pitch of π b) longer than pole pitch π 
 

2) Coil-span factor 
In order to find the coil-span factor, the slot pitch angle, γs, 
must be obtained: 

 m
s

s ph

N
N q N

π πγ
⋅

= =
⋅

 (6) 

The chording or coil-span angle, ε, is: 
 sε π γ= −  (7) 
An illustration of the coil span is shown in Fig 1. The coil-
span factor can be found from: 

 1cos( )
2enk nε=  (8) 

3) Winding factor 
The resulting winding factor is simply the product of the 
distribution and coil-span factor: 
 wn mn enk k k=  (9) 
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Fig 2 Fundamental winding factor kw as a function of q 
 

B. Feasible region of q for concentrated windings 
Designing a machine with concentrated windings would seek 
to achieve the highest possible winding factor. In Fig 2 the 
winding factor variation with different values of q is plotted. It 

is clear that the rapid decrease of the winding factor for q < ¼ 
makes this an unfeasible region. Although the decrease from   
q > ½ towards q = 1 is not that steep it is still an unfeasible 
region in ways of the poor winding factor found here. 
From Fig 2 it can be seen that the best winding factor is 
obtained when q is close to 1/Nph which yields a coil pitch of 
approximately π rad. 
 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
Winding factor kw  as a function of q

W
in

di
ng

 fa
ct

or
, k

w

Number of slots per pole per phase, q

 

 

γ
2γ
3γ

 
Fig 3 Fundamental winding factor kw as a function of q and 
slot pitch  
 
Table 1 show how the resulting coil pitch angle varies for 
different values of q. This is a highly hypothetical approach, 
since letting the coil pitch span over 2 or 3 slot pitches would 
result in a void space in the slots between. Fig 3 shows the 
winding factor variation of table 1. In a practical design the 
number of slots would have been decreased, hence giving a 
better winding factor, but also a q in the feasible region. 
 
It is proposed to define the feasible region as: 
 1 1[ , ]4 2q ∈  (10) 

The theoretical peak for the winding factor is 1/Nph, by 
moving the limits for the feasible region (10) towards this 
point will improve the achieved winding factor. For machines 
with a low pole and slot configuration this would be difficult 
to enforce, whereas machines with high pole and slot 
numbers, the freedom increases. 

C. General design rules 
When designing an electrical machine, certain rules upon pole 
and slot combinations exist. These rules also apply for 
concentrated windings and are listed as follows. 
 
The number of poles has to fulfil three absolute requirements. 
• First of all the pole number must be an even number.  
• Further the number of pole pairs, Pp, in a section, F, of the 

machine can not be a multiple of the phase number, since 
this would lead to unbalanced windings [6]-[8]. 

• The final requirement is that the number of poles can not 
be equal to the number of slots, since this would lead to an 
undesired cogging torque in the machine in addition to the 
machine being a single phase machine. 

The number of slots must be a multiple of Nph. 
 



346 
 

3

The section F is found from: 
 gcd( , / 2)s mF N N=  (11) 

From this the number of pole pair in one section is: 

 
2

m
p

N
P

F
=  (12) 

Number of slots per section is 

 s
a

N
N

F
=  (13) 

 
Number of sections F also has the practical info, when 
modeling the machine in FEA, upon how large portion of the 
machine needs to be modeled in order to have a balance 
between both number of poles and number of slots. If F equals 
1, the complete machine needs to be modeled, whereas if F 
equals 4 only a quarter of the machine is sufficient for the 
FEA model, and so on. 
 

Applying these rules on machines with concentrated windings 
and having the number of phases equal to 3, the only possible 
number of slots is 3, 6, 9, 12,…, 3x, for machines with all 
teeth wound. For machines with alternate teeth wound this 
series would be reduced to only account for number of slots 
equal to 6, 12, 18, 24,…, 6x which actually omits any odd 
number of slots. 

III. WINDING FACTORS TABLE 
Tables 2 and 3 show the fundamental winding factor for 
machines with all teeth wound with concentrated coils. Both 
odd and even slot numbers are included. The gray regions are 
combinations outside the proposed feasible region. The pink 
winding factors are the region boarders, with q = ¼ and ½ 
respectively. Red areas are combinations left out by design 
rules and dark red are combinations where Ns = Nm. Tables 4 
and 5 show winding factors for alternate wound teeth, the 
same color codes applies for these tables. For alternate teeth 

Table 2 Fundamental winding factor, all teeth wound, Nm = 2 up to Nm = 34 
Ns/Nm 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

3 0.866 0.866 q<1/4               
6 q>1/2 0.866 0.866 q<1/4             
9  q>1/2 0.866 0.945 0.945 0.866 q<1/4           
12   q>1/2 0.866 0.933 0.933 0.866 q<1/4         
15    q>1/2 0.866 0.951 0.951 0.866 q<1/4       
18     q>1/2 0.866 0.902 0.945 0.945 0.902 0.866 q<1/4     
21      q>1/2 0.866 0.89 0.953 0.953 0.89 0.866 q<1/4   
24       q>1/2 0.866 0.933 0.949 0.949 0.933 0.866 q<1/4
27        q>1/2 0.866 0.877 0.915 0.945 0.954 0.954 0.945 0.915 0.877
30         q>1/2 0.866 0.874 0.936 0.951 0.951 0.936
33          q>1/2 0.866 0.903 0.928 0.954 0.954
36           q>1/2 0.866 0.867 0.902 0.933 0.945 0.953
39            q>1/2 0.866 0.863 0.917 0.936
42             q>1/2 0.866 0.89 0.913
45              q>1/2 0.866 0.858 0.886
48               q>1/2 0.866 0.857
51                q>1/2 0.866
54         q>1/2

Ns/Nm 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68
27 0.866 q<1/4                
30 0.874 0.866 q<1/4              
33 0.928 0.903 0.866 q<1/4            
36 0.953 0.945 0.933 0.902 0.867 0.866 q<1/4          
39 0.954 0.954 0.936 0.917 0.863 0.866 q<1/4        
42 0.945 0.953 0.953 0.945 0.913 0.89 0.866 q<1/4      
45 0.927 0.945 0.951 0.955 0.955 0.951 0.945 0.927 0.886 0.858 0.866 q<1/4    
48 0.905 0.933 0.949 0.954 0.954 0.949 0.933 0.905 0.857 0.866 q<1/4  
51 0.88 0.901 0.933 0.944 0.955 0.955 0.944 0.933 0.901 0.88 0.866
54 0.866 0.854 0.877 0.902 0.915 0.93 0.945 0.949 0.954 0.954 0.949 0.945 0.93 0.915 0.902 0.877
57 q>1/2 0.866 0.852 0.894 0.912 0.937 0.946 0.955 0.955 0.946 0.937 0.912
60  q>1/2 0.866 0.874 0.892 0.933 0.936 0.951 0.954 0.954 0.951 0.936
63   q>1/2 0.866 0.85 0.871 0.89 0.905 0.919 0.945 0.948 0.953 0.955 0.955 0.953 0.948
66    q>1/2 0.866 0.849 0.887 0.903 0.928 0.938 0.951 0.954 0.954
69     q>1/2 0.866 0.867 0.884 0.913 0.925 0.943 0.949 0.955
72      q>1/2 0.866 0.847 0.867 0.902 0.911 0.933 0.933 0.945 0.949 0.953
75       q>1/2 0.866 0.846 0.88 0.895 0.92 0.93 0.945
78       q>1/2 0.866 0.863 0.879 0.906 0.917 0.936
81         q>1/2 0.866 0.845 0.862 0.877 0.891 0.904 0.915 0.925
84          q>1/2 0.866 0.844 0.875 0.89 0.913
87           q>1/2 0.866 0.859 0.874 0.899
90            q>1/2 0.866 0.843 0.858 0.874 0.886
93             q>1/2 0.866 0.843 0.871
96              q>1/2 0.866 0.857
99               q>1/2 0.866 0.842
102                q>1/2 0.866
105         q>1/2

Table 3 Fundamental winding factor, all teeth wound, Nm = 36 up to Nm = 68 
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wound it is not possible to have an odd number of slots. 
 
The tables show that with Ns > 30 a winding factor kw > 0.94 
is achieved when choosing Nm = Ns ± 2 or Nm = Ns ± 4. 

IV. WINDING SPACE HARMONICS 
Different combinations of slot and pole number effects the 
winding space harmonics. These figures show that some slot 
and pole combinations reintroduce higher harmonic winding 
factors. It also shows symmetry for the harmonic contribution 
for even slot numbers. For odd slot numbers this symmetry 
needs a high number of harmonics to be revealed. 
 
 

 

 

 

Fig 4 Winding factor, all teeth wound Ns=24 
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Fig 5 Winding factor, all teeth wound Ns=54 
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Ns/Nm 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68
24 q<1/4                
30  0.874 0.866 q<1/4              
36  0.956 0.945 0.966 0.902 0.87 0.866 q<1/4          
42  0.945 0.953  0.953 0.945  0.913 0.89  0.866 q<1/4      
48  0.907 0.966  0.958 0.956  0.956 0.958  0.966 0.907  0.859 0.866 q<1/4  
54 0.866 0.854 0.877 0.902 0.915 0.93 0.945 0.949 0.954  0.954 0.949 0.945 0.93 0.915 0.902 0.877
60 q>1/2 0.866  0.874 0.893  0.966 0.936  0.951 0.955  0.955 0.951  0.936
66    q>1/2 0.866 0.849  0.887 0.903  0.928 0.938  0.951 0.954  0.954
72      q>1/2 0.866 0.848 0.87  0.902 0.912 0.966 0.933 0.945 0.958 0.956
78        q>1/2 0.866  0.863 0.879  0.906 0.917  0.936
84          q>1/2 0.866 0.845  0.876 0.89  0.913
90            q>1/2 0.866 0.843 0.858 0.874 0.886
96              q>1/2 0.866  0.859
102                q>1/2 0.866
108                 q>1/2

Table 5 Fundamental winding factor, alternate teeth wound, Nm = 36 up to Nm = 68

Table 4 Fundamental winding factor, alternate teeth wound, Nm = 2 up to Nm = 34
Ns/Nm 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

6 q>1/2 0.866  0.866 q<1/4             
12   q>1/2 0.866 0.966  0.966 0.866 q<1/4         
18     q>1/2 0.866 0.902 0.945  0.945 0.902 0.866 q<1/4     
24       q>1/2 0.866  0.966 0.958  0.958 0.966  0.866 q<1/4
30         q>1/2 0.866 0.874  0.936 0.951  0.951 0.936
36           q>1/2 0.866 0.87 0.902 0.966 0.945 0.956
42             q>1/2 0.866  0.89 0.913
48               q>1/2 0.866 0.859
54                 q>1/2
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V. ATTRACTIVE FORCES IN THE AIR GAP 
As long as one uses iron as the flux carrier in electric 
machines there will be attractive forces between rotor and 
stator. It is a know fact that rotating attractive forces (radial 
for RFPM and axial for AFPM) exists in machines where q is 
not an integer [8]-[10]. Since machines with concentrated 
windings always have fractional type winding this is 
something to be aware of during the design of the machine. 
These sub harmonic force waves (i.e. force waves with longer 
wavelength than the pole width) will if the machine is badly 
designed create noise and vibrations. The important issue here 
is that the force wave, with its harmonics, should not excite 
any of the resonant frequency of the machine. 
 
In Fig 9 the attractive force component around the air gap is 
plotted for machines with different pole-slot combinations. 
The force is found be integrating the density over the surface 
of each tooth at a given position. This means that information 
about higher harmonics is lost, and therefore only the 
fundamental for the different cases are investigated. The force 
values have been normalized with respect to the amplitude 
value of each case. From the figure it can be seen that the 
attractive forces have the same number of poles, or number of 
periods as the difference between poles and slots.  
 
From Fig 9 it can be concluded that the fundamental wave 
length of the attractive force in radians is: 

 ,1
2

F
s mN N

πτ =
−

 (14) 
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Fig 9 Plot of force distribution for different slot pole 
combinations 

 
This fundamental force wave will rotate at a speed 
proportional the rotor speed, but in opposite direction:  

 ,1
m

F r
s m

N
N N

ω ω
−

= ⋅
−

 (15) 

 
Usually the main concern in RFPM is whether the attractive 
force between rotor and stator are symmetric. This does not 
apply for the AFPM since the attractive forces are axial 
direction. Having an eccentric force in a RFPM will act much 
in the same way as having a mechanical unbalanced rotor. In 
Table 6 the total integrated force at a given instant (same as 
Fig 9) for radial direction is given. Considering the numerical 
accuracy of the model the radial forces for case 2-6 can be 
considered zero, i.e. balanced out or symmetrical. Case 1 
(|Nm-Ns|=1) has a relatively high resulting radial force, the 
base value is the same as for Fig 9. The conclusion from Table 
6  is that for all other than case 1 the attractive force between 
rotor and stator are symmetrical. 
 
Table 6 Total integrated radial force 

|Nm-Ns| Frad [pu] 
1 3.35 
2 0.05 
3 0.04 
4 0.05 
5 0.06 
6 0.05 

 
As mentioned the important issue is whether the different 
force waves excites resonant frequencies in the machine. 
Using the radial flux machine as an example it has several 
different modi for its resonances (Fig 10). The lowest 
corresponds to the even push and pull between rotor and stator 
(DC level), the next is the eccentric pull (one period), then the 
elliptic shaped (two periods) etc. From Fig 9 on can see that 
this resembles the shape of the different curves for the 

Fig 7 Winding factor, alternate teeth wound Ns = 54 

Fig 8 Winding factor, all teeth wound Ns = 51 
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attraction forces. They all have a DC-component (Mode 0), 
but they all have different fundamental, and therefore will 
excite different resonance frequencies in the machine. |Nm-
Ns|=1 is eccentric (Mode 1), |Nm-Ns|=2 is elliptic (Mode 2), 
|Nm-Ns|= is triangular (Mode 3) etc. Based on this knowledge, 
a pole slot combination can be chosen so that its fundamental 
force wave does not excite a critical mode in a given machine. 
It is obvious that the amplitude value and the shape are 
depending on the geometry of the air gap, but this has not 
been considered in this work. 

Mode 0 Mode 1

Mode 2 Mode 3

 
Fig 10 Four different modus of resonance in the radial 
directions 

VI. CONCLUSION 
A method of calculating winding factors for concentrated coils 
without having knowledge of the winding layout has been 
proposed. The method is based on a fractional slot approach 
used for distributed windings. The proposed method yields for 
concentrated windings on both machines with all and alternate 
teeth wound. The winding factor variation for different values 
of q has been shown, and based on this a feasible region for q 
has been proposed to [¼, ½]. 
 
Tables of winding factors for different slot and pole 
combinations have been presented both for machines with all 
and alternate teeth wound. The tables show that choosing 
Ns>30 and Nm = Ns ± 2 or Nm = Ns ± 4 will always ensure a 
winding factor kw > 0.94, for any allowed slot and pole 
combination when dealing with concentrated windings. 
 
The winding space harmonic variation for different slot and 
pole combinations has been presented; where it was shown 
how higher order space harmonics may be reintroduced for 
some combinations. 
 
The force calculations show that for all other combinations 
than Ns=Nm ± 1 yields symmetric attractive forces in RFPM. 
For both AFPM and RFPM one should be aware of the 
relationship between resonance frequencies of the machine 
and the wave length of the fundamental force wave. 
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