
Albis motor controller IC

Setup manual
version 2.21

Copyright 2014, B.M. Putter,
Adliswil, Switzerland
bmp72@hotmail.com



Some general remarks:

Before connecting the battery make sure the output stage polarity is set correctly. Use a
fuse in the battery line. There should be no diode in the battery line. Make sure the current
sensors are connected conform the schematic and that the default calibration values are
written. An error here can cause severe damage to the output stage (again, make sure to
have a fuse in the battery line).

The menu system was designed using 'gtkterm' under Ubuntu. The baudrate is
115200 baud, 8 data bits, 1 stop bit, no parity, no handshaking.

Under windows the freely available program 'termite' can be used, I tested version 2.8.
The main difference between the two is that gtkterm transmits characters as they
are typed while termite waits for an return before sending the characters. This means
that whenever the chip waits for 'press any key', in termite the chip will only respond
correctly when the return key is pressed. In the serial port settings of termite select
'append CR' and disable 'local echo'

The chip can be placed in the setup mode by closing the setup switch connecting pin 19
to ground while resetting the chip. Upon entering setup mode a keypress on the PC is
necessary before the chip displays the main setup menu.



Except for the output stage polarity all data during setup is recorded in RAM. It is only
stored in EEPROM for motor use when the correct menu option for this has been
selected. Do not turn off the power before writing the new setup to EEPROM !

Some menu options have a yes/no or high/low setting. Selecting this type of menu option
toggles the setting, no further input is required.

Every time the chip displays a menu all internal 16 bit variables are translated into decimal
numbers. When new numbers are entered the controller IC immediately translates these
into a 16 bit number (which it uses for running the motor). The consequence of this is
that in between entering a new number and the displaying of the updated menu 2 rounding
operations have occurred, first after translating to 16 bits and then after translating back to
decimal. This gives an insignificant discrepancy between the entered data and displayed
data.

The chip does not perform any checks to see whether data is valid, this is up to the
users common sense. Entering negative numbers or letters where positive numbers
are required will result in the refreshed menu displaying data not correlated to the entered
characters.

Some displayed values are calculated using more than one 16 bit variable, changing one
variable can change the displayed decimal value of more than one menu option. Notable
examples of far-reaching variables: sensor transimpedance and f_sample

Pressing the setup key while in motor mode will write the current sensor gain and offset 
calibration values to EEPROM. This is indicated by all four drive LEDs lighting up.



########################################
#   (c)opyright 2014, B.M. Putter      #
#   Adliswil, Switzerland              #
#   bmp72@hotmail.com                  #
#                                      #
#  version 2.21                        #
#  experimental, use at your own risk  #
########################################

0) mode: Toneless, with recovery
a) PWM parameters
b) current settings
c) throttle setup
d) erpm limits
e) battery
f) current sensor calibration
g) control loop coefficients
h) filter bandwidths
i) FOC motor impedance
j) CAN setup
k) recovery only
l) miscellaneous
z) store parameters in ROM for motor use

> 
This is the main setup menu as displayed when the chip is in the setup mode. From this menu all the
sub menus can be selected.

Option 0 toggles between the three motor start options of this version: HF tone, Toneless and 
Toneless with recovery.



a) PWM frequency: 21kHz
b) deadtime: 499ns
c) dutycycle testsignal: 50%
d) toggle high side polarity, now active HIGH
e) toggle low side polarity, now active HIGH
f) test PWM signals

g) autocomplete

h) loop sample frequency: 41.03 kHz

z) return to main menu

>

This is the setup menu for the output stage. Option a sets the PWM frequency that is used for
operating the output stage. The deadtime used between the switching of the high/low side
transistors is set using option b. With option c the dutycycle for the testsignal (option f) is set, this
option has no effect when the controller is not in setup mode.

Options d & e MUST BE SET FIRST AND BEFORE THE BATTERY IS CONNECTED !!! These options
determine whether a high (active HIGH) or low (active LOW) signal is used to turn on the high/low
side FET. Unlike all other options (which are only saved to EEPROM when the controller IC is instructed
to do so) these options are directly written to EEPROM.

With option f a test-signal having the properties of options a-c is generated. After selecting this option
the controller will ask you to press any key before the test signal is turned on.  After again pressing a
key the test signal is turned off and the controller returns to the menu.

Option g is the autocomplete. In every menu where there is an autocomplete option, all the options below
it are autocompleted. In this case option h, which is the frequency at which the control loops operate (the
frequency at which the chip makes measurement, calculates the new output signals and writes
new values to the PWM output stages). The value for h is based on the PWM frequency, times 2 minus
1 kHz (but below 45 kHz). Option h can of course be manually entered by selecting it. 

a) PWM parameters



a) current sensor transimpedance: 100.00 mV/A
b) maximum motor phase current: 15.9 A
c) maximum battery current, motor use: 1.9 A
d) maximum battery current, regen: 0.4 A

e) autocomplete

f) HF current, base level (HF only): 0.7 A
g) HF current, proportional factor (HF only): 1.0000
h) maximum phase current in drive 2 (HF only): 7.5 A
i) phase current for forcing motor position: 3.1 A
j) maximum shutdown error current, fixed: 1.9 A
k) maximum shutdown error current, proportional: 1.9 A
l) applied braking current (phase) on direction change: 14.9 A
m) offset filtering (phase) current limit: 0.0 A

z) return to main menu

> 

This is the setup menu for anything current related. Options a-d are the minimum settings that must be
entered by the user, the rest can be autocompleted. Options a sets the current sensor transconductance,
option b the maximum motor phase current amplitude, option c the maximum battery current in motor mode
and option d the maximum battery (charge) current during regen.

When the option is set (in a later menu) to run position sensing at standstill by means of a High Frequency
tone, option f sets the amplitude of the tone for throttle closed. As the throttle is opened the amplitude of
the HF tone increases proportionally to the phase current as indicated by option g. Since part of the current
sensor range is used for the HF tone, not all is available for the actual powering phase current. The max
powering phase current remaining is given by option h. At startup and during measurements later on the
motor must be brought in a pre determined position, this is done with a current as specified in option I.

 

b) current settings



a) current sensor transimpedance: 100.00 mV/A
b) maximum motor phase current: 15.9 A
c) maximum battery current, motor use: 1.9 A
d) maximum battery current, regen: 0.4 A

e) autocomplete

f) HF current, base level (HF only): 0.7 A
g) HF current, proportional factor (HF only): 1.0000
h) maximum phase current in drive 2 (HF only): 7.5 A
i) phase current for forcing motor position: 3.1 A
j) maximum shutdown error current, fixed: 1.9 A
k) maximum shutdown error current, proportional: 1.9 A
l) applied braking current (phase) on direction change: 14.9 A
m) offset filtering (phase) current limit: 0.0 A

z) return to main menu

> 

Options j and k set the maximum allowed error current at  0 signals to the motor (option j) and at max signal
amplitude to the motor (sum of j+k). The error current serves as a fault detection mechanism, when the level
is violated the controller will default to drive_0.

When reverse is used the motor cannot instantly change direction. The mechanical energy of the spinning
motor / moving vehicle must be reduced by either letting it spool down freely (option l = 0 A) or by specifying
a regen braking current to actively slow the motor down (option l > 0 A). Note that when a braking current is
specified, option d must be set to allow for regen current. 

In drive_3 the controller can perform auto-offset calibration of the current sensors. This is not always a good
idea, especially when currents are high and the sensors are non-linear. With option m the chip only calibrates
the current sensors when the phase current is below the set value. By specifying 0 the auto offset calibration
is effectively turned off. If auto calibration is used dependent on the motor and current sensors the motor 
can start bucking after about 30 seconds in drive_3, this is an indication that option m must be reduced.

b) current settings



a) calibrate throttle 1
b) calibrate throttle 2
c) polynomial coefficients throttle 1 (x, x^2, x^3): 1.0000, 0.0000, 0.0000
d) polynomial coefficients throttle 2 (x, x^2, x^3): 0.0002, 0.0002, 0.0002
e) use analog throttle 1: YES
f) use analog throttle 2: NO
   receive throttle over CAN: NO
g) TX throttle over CAN: NO
h) test throttle

z) return to main menu

>

c) throttle setup

Upto 2 analog throttles can be connected to the controller IC. Options a and b are for calibration. The IC
will measure the throttle voltage for throttle closed and throttle open. The throttle closed voltage must be
lower than the throttle open voltage.

Either one of the throttle channels can be used for variable strength regen. This can be achieved by
using negative polynomal coefficients (see the next slide)

Toggle options e and f indicate to the IC which analog throttle to use. When both are 'NO' the IC will
automatically set the 'receive throttle over CAN' option. When the analog throttles are used there is
an option to transmit the throttle information over CAN bus to other motor controller IC's.

When analog throttles are used also the 'reverse' switch can be used to select reverse. The state of
this switch will also be transmitted over CAN. An IC receiving throttle information over CAN will also
receive the 'reverse' information.



c) throttle setup

Based on the calibration information the throttle voltage will be transformed into variable x (x
1
 for throttle 1,

x
2
 for throttle 2) in the range of 0 to 1. Out of range voltages are rounded to 0 or 1. Variables x

1
, x

2
 and the

state of the reverse switch are transmitted or received over CAN bus. 

Variables x
1,2

 are transformed into variables y
1,2

 by means of a polynomal function (the purpose of which

is to be able to make different types of throttle response curves):

y
1
 = a

1
 x

1
 + b

1
 x

1

2 + c
1
 x

1

3

y
2
 = a

2
 x

2
 + b

2
 x

2

2 + c
2
 x

2

3

Options c and d are  used to input the coefficients a
1,2

 , b
1,2

  and c
1,2

. Valid values are between -7.999 and

+7.999.

Based on the throttle information the motor's phase current is given by:

phase current = maximum phase current * (y
1
 + y

2
)

The maximum phase current is entered under menu d, option c. 

Variables x
1
, x

2
 are shared over CAN bus. Every motor controller IC however has its own set of a, b and c

coefficients and its own maximum phase current setting. This allows the combining of motors with 
different ratings to operate of a shared throttle.
 
A negative phase current means current will flow to the battery, this is how variable strength regen can
be obtained. When the conditions are such that the throttle requested phase current means that the
maximum battery current or maximum battery regen current will be violated the phase current is
automatically reduced. 



c) throttle setup

some example throttle curves :

a,b,c = 1, 0, 0

a,b,c = 0.10, 0.38, 0.52

a,b,c = 2.43, -1.89, 0.46

x

y



|       2           1 R                    0            X      +
|      2           1| R                    0           X       +
|     2          1  | R                    0         X         +
|    2         1    | R                    0        X          +
|   2         1     | R                    0       X           +
|  2         1      | R                    0      X            +
|  2         1      | R                    0      X            +
| 2          1      | R                    0      X            +
| 2         1       | F                    0     X             +
| 2         1       | F                    0     X             +
| 2        1        | F                    0     X             +
|2         1        | F                    0     X             +
|2         1        | F                    0     X             +
|2         1        | F                    0     X             +
2          1        | F                    0     X             +

c) throttle setup

Because of the complexity of the throttle setup and it's importance for safety a test function has been
implemented (option h). 

x
2

x
1

0 boundary
for x

1 boundary
for x

-1 boundary
for y

1
 + y

2

+1 boundary
for y

1
 + y

2

y
1
 + y

2

forward or
reverse

The throttle information as shown above is updated around 30 times a second. The receive / transmit
over CAN functionality is active so it's possible to test a multi-controller setup.  



a) erpm limit, forward: 49.96 kerpm
b) erpm limit, reverse: 49.96 kerpm
c) accept direction change below: 75 erpm
d) transition erpm drive 2 > 3: 789 erpm
e) transition erpm drive 3 > 2: 187 erpm

z) return to main menu

>

The chip has 4 different running mode, called drive_0 to drive_3. When not using recovery, drive_0 is the
startup mode where the chip ends up at reset or after an error current event. It transitions to drive_1 when the
throttle is closed and the motor is at standstill. Drive_1 is only used in combination with the HF tone, in this
mode the motor is brought to a preset position (the force position current (option I of the current menu) must
be high enough to do this !) Finally drive_2 is the mode in which the motor is started (either with or without
HF tone) and drive_3 is the main FOC running mode in which 99% of the driving around is done. The drive
mode 1 is different when recovery is selected, see later in this manual.

In the erpms menu, options a and b set the maximum motor speed (electrical rpm !) for forward and
and reverse direction. The reverse pin is treated as a request for reverse. When the request comes the
motor is spooled down with the braking current as set in the currents menu, and the request is granted
once the motor speed is below the speed set in option c.

The transition erpms between starting the motor and the FOC running mode are set with options d and e.
Note that some hysteresis should be build in by specifying option d larger than option e.

d) erpm limits



a) battery voltage: 64.1 V

z) return to main menu

> 

The battery menu at the moment only allows you to enter the battery voltage. This value is (at the moment
only) used to calculate the correct motor inductance value in a later menu. 

e) battery



a) restore calibration, autocomplete
b) perform offset measurement
   sensor a: 0.0 mV
   sensor b: 0.0 mV
   sensor c: 0.0 mV
c) perform gain measurement
   channel a: 99.99 %
   channel b: 99.99 %
   channel c: 99.99 %
d) online gain calibration update rate: 0.302 %

z) return to main menu

>

The current sensors can be calibrated for gain and offset. Option a resets all calibration values to default.

Option b performs the offset measurement. Good offset calibration is necessary for smooth (very very)
low sensorless operation. When you select option b the motor will make a noise as the controller makes
the measurement.

Option c performs the gain calibration. The position detection at standstill with the HF is based on the
inductances in the motor having different values, it is based on different 'gains' from the controller output
voltages via the motor to the current sensors. Any gain error in the current sensors is added / taken into
account in this detection method. As we only want gain differences from the motor inductances and not
from differences in the current sensors, the gain differences between the current sensors must be
calibrated for.

When you perform the gain measurement the motor will make a noise and move over an e-rotation. The
motor must be able to spin unhindered during this measurement. If the motor does not move smoothly,
the positioning current (option I in the current menu) must be increased. Make sure that after the
measurement the gain % add up to close to 300%, if not restore calibration and try again.

The gain calibration also runs when the motor is spinning in drive 2 (with the HF tone), the update speed
is set with option d (every e-rotation the gains are updated with this magnitude).

f) current sensor calibration



a) autocomplete

  phase control loop, drive 3
b) 1st order: 240
c) 2nd order: 12.0000
d) 3rd order: 0.3000
  phase control loop, drive 2
e) 1st order: 480
f) 2nd order: 24.0000
g) 3rd order: 0.0299
  amplitude control loop
h) 1st order: 60
i) 2nd order: 3.0000
j) 3rd order: 0.0749
k) maximum amplitude: 100 %

z) return to main menu

>

Lets assume a f_sample of 40kHz (PWM menu, option g)

Every cycle of f_sample (so 40000 times a second) the controller decides by how much to upgrade the
phase and amplitude of the 3 signals driving the motor. The coefficients b to d and e to g are the maximum
updates for the phase loop, the coefficients h to j the max updates for the amplitude loop. To make the
algorithm fast to calculate, an update is either to add the coefficients or subtract the coefficients from the
internal variables.

The internal phase is called phi. phi has a range from 0 to 65535 (32 bit, with 16 before the comma and
16 after) representing 0 to 360 degrees.

The internal amplitude is called ampli (inventive, ey ?) and has a range from -32767 to +32767 (again
32 bit with 16 after the comma), with 32767 being the maximum voltage to the motor (with Vbat lets say
60V at max ampli (so 32767) the sines to the motor will have 1.15*60 = 69 V peak to peak).

g) control loop coefficients



The controller uses moving-midpoint, meaning it can output sine waves with a peak-peak 15% larger than
the supply, this is the reason for the 1.15. The output voltage are like the tips of a 3-prong propellor blade,
the moving midpoint means the center of the propellor moves up and down. All very much like the rotor in
a Wankel engine.

Every cycle the controller determines whether to increase or decrease phi and ampli (so phase and
amplitude of the 3 motor signals).

b, e: every cycle this coefficient is added or subtracted from the phase phi, but it's contribution will be
forgotten by the next cycle. It is kind of a momentary jump in phase, one which will be forgotten by the next
cycle. It is a coefficient necessary for loop stability, it's minimum value is 20 times coefficient f. The
value 240 represents (240/65536)*360 = 1.32 degrees

c, f: every cycle this coefficient is added to or subtracted from the phase phi but its contribution is not
forgotten, it represents the phase advance (or retreat) every cycle. When a motor is running you need a
constant phase advance, as the back emf sine waves keep advancing and the controller needs to keep
up with this. The value of 12 represents (12/65536)*360 = 0.07 degrees.

d, g: every cycle the phase phi is also increased by a constant phase increase which I call phi_int. Phi_int is
updated every cycle by the value of coefficient g. So if phi_int for instance is 100, it means every cycle the
phase phi is automatically advanced by 100 (/65536 * 360 = 0.55 degrees). This automatic advance comes
on top of the advance of coefficient c,f. For stability d,g must be less than 1/40th of c,f.

When the motor is running at a constant speed, all contributions from coefficients b,e and c,f will average out
to 0. The phase advance of the internal variable phi purely comes from its automatic updating with phi_int.
When the motor slows down or speeds up, the controller will immediately respond with phase updates from
coefficient b,e and c,f, but coefficient d,g means also the automatic phase update phi_int will increase (speed
up) or decrease (slow down). Phi_int is a measure of motor speed. With phi_int = 100, phi will be increase
40000 times a second with 100, so a total phase advance of (100 * 40000) / 65536 times 360 =
61 times 360 degrees, so 61 e-rotations per second (times 60 for per minute = 3660 erpm)



the amplitude coefficients work the same.

h: is added to the amplitude every cycle but will be forgotten by the next. With 60V battery, 120 represents
a peak-peak increase/decrease of (120/32767) * 1.15 * 60 = 0.253 V
i: is the update for the amplitude variable that will not be forgotten from cycle to cycle, 6 represents 12.6 mV
j: and this coefficient accumulates in the automatic amplitude update variable which will be added to the
amplitude every cycle...

The phase loop coefficients can be chosen differently for drive_2 (startup) and drive_3 (normal running).
Drive_2 benefits from a lower 3rd order coefficient as too high a value puts a lot of noise on the motor speed
variable phi_int which can make the controller jump too early to drive_3. Higher values for the 1st and 2nd
order coefficient makes the controller faster to respond (bigger phase steps) which is good when the motor
moves and you want the controller to immediately catch on.

In drive_3 it's best to let the coefficients have the ideal ratios b/c of 40 and c/d of 20. Higher values means
the phase updates for every cycle are larger: I can imagine this is good for a high speed motor, or when
the motor speed rises/drops sharply.    



a) autocomplete

b) throttle current filter 3dB freq: 100 Hz
c) error current 50% step response time: 5.005 msec
d) induction position filter 45 degree delay speed: 5.93 kerpm
e) drive 2 speed filter 50% step response time: 319.8 msec

z) return to main menu

>

This menu sets the filter bandwidths for various filter in the controller IC.

Option b specifies the frequency for the throttle current filtering. High is bad because it makes the FOC
algorithm jumpy, low is bad because it makes it unstable. Inbetween is good.

The error currents are filtered so that the controller doesn't conk out to drive_0 for spikes which are higher
than the error current settings. The response time for this filter can be set using option c.

The HF algorithm at a certain point arrives at two variables X and Y which follow a circle as the motor 
turns. The angle from the circle center is a measurefor  the angle at which the motor is positioned. X and Y
are noisy and are filtered with the filter specified under option d. Not enough filtering (high value) and the
position detection is noisy. Too much filtering means the delay through the filter cause the XY position
to seriously lag behind the actual motor position (when the motor is running at speed). The autocomplete
calculates the correct filter frequency based on the drive_2 to 3 transition rpm.

The internal motor speed variable is too noisy to reliably make the changes between drive modes 2 and 3.
Therefore a very slow filter is added (option e) and the drive mode transitions are based on the output
of this filter. This prevents incorrect transitions coming from spikes on the internal variable phi_int.

h) filter bandwidths



a) autocomplete

b) FOC measurement current: 7.9 A
c) FOC measurement erpm: 56.35 kerpm
d) perform impedance measurement

 measured inductance: 86.1 uH

z) return to main menu

>

For the Field Oriented Control the motor impedance must be measured.

Option a autocompletes the measurement currents and erpms. Option d must be manually selected
and will perform the actual measurement (the motor will make a noise). In order to display the correct
impedance value, the battery voltage must be set correctly (main menu, option e).   

i) FOC motor impedance



a) CAN 'address': 16383
b) CAN CFG1 as per Microchip 30F manual: 65535
c) CAN CFG2 as per Microchip 30F manual: 65535
   RS232 output rate: 3636 Hz
z) return to main menu

>

j) CAN setup

This menus sets the properties of the CAN bus. Option a sets the 'address' (acceptance filter in CAN
speak), the addresses of the transmitting and receiving controller must match for communication to
occur. Multiple master/slaves with different addresses can use a single CAN bus. Valid values are
in the 0 to 2046 range.

Options b and c configure the CAN bus data rate, see the 30F manual from Microchip. For a typical robust 
100 kHz bitrate setup, use '14' for option b and '664' for option c. Throttle and reverse information
(60 to 70 bits) is sent at a rate of 100 Hz.

During motor use the RS232 is dormant. Normally no information is transmitted but when the controller
receives a single lower-case letter according to the table it will start transmitting 16 bit data at a rate
indicated here under 'RS232 output rate'. Data is outputted as 2's complement with the high byte first.
Transmission will stop once a character not in the table is received.

a
b
c
d
e
f
g
h

phi (slide 16)
phi_int (slide 16)
phase current, filtered
phase current, requested from throttle
amplitude (slide 18)
throttle 1 (x1)
throttle 2 (x2)
combined throttle after polynomals (y1+y2)

i
j
k

calibration value current sensor A
calibration value current sensor B
calibration value current sensor C



a) autocomplete

  phase control loop, recovery
b) 1st order: 0
c) 2nd order: 120.0000
d) 3rd order: 3.0000
  amplitude control loop, recovery
e) 1st order: 240
f) 2nd order: 12.0000
g) 3rd order: 0.0000
h) pulse when current drops below: 0.9 A
i) pulse width: 19 usec
j) pulse % for exit: 50
k) pulse % filter 50% step response time: 51.5 msec
l) speed filter 50% step response time: 7.0 msec
m) try restart for: 499 msec
n) check for spinning motor, drive_0: disabled
o) check for throttle closed, drive_0: disabled
  exit from startup to recovery at current
p) current to check: total current
q) fixed part: 3.1 A
r) proportional to throttle current, factor: 100 %
s) current filter 50% step response time: 3.0 msec

z) return to main menu

>

k) recovery only

Recovery is done by pulsing the motor (shorting it out) and then observing the currents and trying to 
get phase and amplitude information from this. As phase and amplitude information come closer and 
closer to the correct value, a pulse generates less and less current. To maintain the current level the 
pulse rate will increase. When the pulse rate has reached a certain level the motor is 'recovered' and 
normal running will commence.

When recovery is used it is indicated by the drive_1 LED (with drive_0 controller startup, drive_2 
motor start with wiggle and drive_3 normal FOC running).



k) recovery only

A pulse has the length of time as given by option i. During a pulse the motors backemf voltage will 
induce a current in the windings. Because of the inductance this current will keep flowing after the 
pulse has ended. When the current drops below the level of option h a new pulse is given. As the 
controller gets closer and closer to being in sync, the current induced from every pulse will be less 
and less. So after every pulse the current level of option h is reached sooner, to maintain this current 
level the pulse rate will go up as controller gets more and more in sync. The pulse rate is passed 
through a filter (option k) and when it reaches the level of option j the motor is declared 'recovered'
and normal running will commence.

Options b to g are the phase and amplitude control loop coefficients used during recovery. They are 
set rather high to increase speed of recovery. Too high however and the phase/amplitude information 
will jump around a lot, making it difficult to accurately capture the motor. In practise this means the 
controller will not reach a high enough pulse rate to exit drive_1.

To start normal running the controller needs to obtain speed information during recovery, this 
information is filtered using option l. The number here must be less than the pulse filter option k, as 
the speed filter must be settled before pulse filter settles.

Whenever an error or glitch occurs the controller will exit to drive_1 and try to recover the motor. In 
case of a serious problem like a blown FET the controller will not be able to recover. Recovery is 
tried for the amount of time specified under option m, if unsuccesfull the controller will go to drive_0. 
Here the controller will yes/no wait for motor stop (option n) and/or throttle closed (option o). Having 
option n set to enabled will also detect a shorted out FET. Option o is there to prevent the motor from 
starting with high torque when the controller is powered on for the first time. Both options can be 
disabled (this enables for on the fly controller reset or turn-on).

  



k) recovery only

In Toneless with recovery drive_0 is the startup mode where the controller can wait for throttle closed 
and motor standstill. Drive_1 is the recovery mode, drive_2 is sensorless motor start with wiggle and 
drive_3 is sensorless FOC. An error or glitch in drive_2 or drive_3 will make the controller jump to 
drive_1, the recovery mode. If recovery is unsuccesfull the controller goes back to drive_0.

With a well-setup controller it should never have to use the recovery mode during normal use.

Drive_3 is exited to recovery when the error current level is tripped or complete sync is lost.

Drive_2 is exited when the total or error current (option p) , after filtering with option s, exceeds a 
level calculated as the sum of option q plus the throttle phase current times option r.

The options mentioned above should be set such that the controller jumps to recovery only under 
abnormal circumstances. For instance: lets assume the controller is on a bike ridden off-road. At 
speed the rider locks the wheel to make a slide and then releases the brake to continue riding. What 
should happen to the controller is the following: before the slide the motor is running in drive_3, the 
normal running mode. Locking the wheel with the brake is an instantaneous large speed change, the 
error current detection should trip and the controller goes to recovery mode: drive_1. As the 
controller is very fast (a 1000 yards/sec rifle bullet only travels for an inch in one controller cycle) it 
will almost immediately declare the motor recovered as it is not rotating during the slide. Because of 
the low detected speed the controller will go to drive_2, motor start. As the brake is still on, 
dependent on the throttle a certain amount of phase current flows but the motor does not rotate. 
Then, at the end of the slide when the brake is released the motor will instanteneous speed up due 
to the bike still moving. Based on the settings and the acceleration of the motor either the controller 
will keep up or not. When it keeps up, it will go from drive_2 to drive_3 and all is well. When it does 
not keep up settings p to s in the recovery menu must trip and the controller must go to recovery 
again (drive_1). Now with the motor at speed the controller will recover and exit recovery mode to 
drive_3. If this doesn't happen but instead the motor stays locked up in drive_2, settings p to s must 
be corrected....

  



a) autocomplete

b) motor standstill voltage threshold: 0.48 V
c) low side pulsing in drive 0: enabled
d) low side pulsing rate: 20 Hz
e) low side pulsing width: 20 usec
f) wiggle range: 19 deg
g) wiggle rate: 9 Hz
h) minimum # of cycles going from drive 2 to 3: 1000
i) number of cycles going from drive 3 to 2, HF only: 200

z) return to main menu

> 

l) miscellaneous

Options b-e are discussed on the following pages. 

When toneless start is selected, a wiggle on the phase (drive_2 only) is used to intise a response from 
the motor that the sensorless algorithm can work with. Option f sets the amount of e-phase the the motor 
should be wiggled over, option g sets the rate. The wiggle is especially usefull for losening up RC motors 
which have a relatively large amount of cogging. The wiggle can be disabled by making option f 0.

The actual backemf based sensorless will see the wiggle and try to follow it. When the chip transides to 
drive_3, the wiggle can be disruptive and cause an error current event. Therefore there is an inbetween 
mode (drive_2to3) during which error current detection is disabled. Option h sets the minimum amount of 
cycles to be spend in this transitional mode. After this amount of cycles, the chip checks for low error 
current before transiding to drive_3.

Option i is only active in HF mode. The HF tone is off in drive_3, and must be re-started before entering 
drive_2. This must happen very fast, as the motor is slowing down meaning backemf sensorless 
information is rapidly disappearing. Option i specifies how much time is spend to restart the HF tone. Note 
that the HF tone must pass through through some filters (option d of the filters menu) and that this takes 
time, option i cannot simply be made 0).



Since the controller powers all motor terminals all of the time a mechanism has to be in place to tell the
controller when it's safe to take control of the motor. This is determined in drive_0, the only mode in which
the motor terminals are 'released'. To transide out of this mode the throttle has to be closed (or on regen)
and the motor speed has to be low. The motor voltage amplitudes as seen by the controller have to be
below the voltage of option b. 

option b



Dependent on the type of output driver a bias current can pass through resistors Rb in which case the 
detected voltages will never fall below 2.5V+option b. 

The figure shows a typical output stage driver built using a NCP 5181. The high side driver is supplied from
a capacitor which is charged using a diode. When the capacitor is not fully charged the diode will conduct,
causing a current to flow according to the red path. The current passes through Rb, raising the voltage to
the controller IC. When the voltage stays above 2.5V+option b the IC will stay in drive_0.
To prevent this from happening the high side driver's supply capacitor must be fully charged. The diode will
then no longer conduct and no parasitic current will flow though Rb.



The figure shows the high side driver's supply current path when its supply capactor is properly charged.

To charge the supply capacitor the controller offers the option to pulse-wise turn on the low side FET. When
the low side FET is on the supply capacitor will be charged, enabling the correct detection of 2.5V+option b.

The pulsing of the low side FET during drive 0 is turned on or off with option c. Options d and e set the
pulse frequency and duration. The options should be set low enough not to drastically brake the motor and
high enough to keep the high side driver supply capacitor charged to a sufficient level.
 



a) save data to ROM for motor use
b) print data in HEX format
c) enter data in HEX format
d) online parameter save: disabled

z) return to main menu

>

This menu allows for the saving of data to the chips internal ROM memory, so that all the settings can be
used for running the motor. For this option a must be used.

Option b print out all the variables in HEX format, which can then be saved in a text file on the computer.

z) store parameters in ROM for motor use

> b 

 save the following HEX lines in a text file, including the '*' termination character

0x0532 0x0532 0x085D 0x0027 0x0007 0x0003 0x7FBC 0x0623
0x0000 0x018B 0x8000 0x07AD 0x03D6 0x0E92 0x0400 0x0400
0x0400 0xAAAA 0xAAAA 0xAAAA 0x00FA 0x0248 0x000F 0x02DB
0x000B 0xFC6E 0x0400 0x1000 0x0000 0x0000 0x0000 0x0000
0x0000 0x0076 0x02BC 0xFFFF 0xFFFF 0x1EB6 0x01EB 0x01EB
0x0000 0x0800 0x0258 0x0064 0x003C 0x003C 0x000E 0x0298
0x0000 0x4CCD 0x000C 0x0000 0x00F0 0xFFFF 0xB333 0xFFF4
0x0000 0xFF10 0x0000 0x07AE 0x0018 0x0000 0x01E0 0xFFFF
0xF852 0xFFE8 0x0000 0xFE20 0x0003 0x0000 0x0078 0x0000
0x0000 0xFFFD 0x0000 0xFF88 0x0000 0x0000 0x003C 0x0003
0x0000 0x0000 0x0000 0xFFC4 0xFFFD 0x0000 0x0000 0x0000
0x00F0 0x000C 0x0000 0x0000 0x0000 0xFF10 0xFFF4 0x0000
0x0000 0x0000 0x0095 0x6400 0x00F4 0x05DC 0x0F5B 0x001F
0x00E4 0x02C6 0x009F 0x0007 0x02BE 0x0042 0x0007 0x1C70
0x0000 0x03E8 0x00C8 0x5027 0x01F4 0x4010 0x061E 0x0215
0xFFFF 0xC519 0x764B 0x5482 0x41B3 0x35C3 0x2D7A 0x276B
0x22C9 0x1F1E 0x1C28 0x19B5 0x17A6 0x15E6 0x1463 0x1312
0x11EB 0x10E4 0x0FFB 0x0F28 0x0E6B 0x0DC0 0x0D23 0x0C94
0x0C10 0x0B97 0x0B27 0x0ABF 0x0A5F 0x0A05 0x09B1 0x0962
*



The data from the text file can later be read into the controller IC by using option c. Most terminal programs
have the option to send a raw file over RS232, this can be used to send a previously saved HEX file to the
chip.

After using option c, press enter to restore the menu and then use option a to save to ROM.

Finally, when option d is turned on, gain and offsetcalibration data gathered while running the motor can
be stored to ROM. While in motor mode, activate setup to store the data. All drive mode indicating LEDs
will light up and the chip will return to drive_0.


