Horses of Iron

Sad video taken on the last run for the Appleton electric trolleys on Sunday, May 6, 1930:
http://www.youtube.com/watch?v=T3ssuRfozy0
[youtube]T3ssuRfozy0[/youtube]

What was cool about Appleton was that the city has installed "the first hydro-electric central station to serve a system of private and commercial customers in North America" in September 30, 1882... Fairly unassuming little 12.5 kW hydro facility:
View attachment 4

...that burnt down in 1891, but the folks in Appleton built a replica:
Appleton_1882b.jpg

From the American Society of Mechanical Engineers:
http://sections.asme.org/milwaukee/history/1-vulcan.html
Appleton_1882a.jpg

The Vulcan Street Plant had an "Elmer" waterwheel, so named because it was patented by Mr. Elmer of Berlin, Wisconsin. The output of the original dynamo was 12.5 KW and was capable of lighting 250 sixteen-candlepower lamps.

Elmer had several US patents for water-wheels in the 1870-1880's...maybe this one from 1878:
US209873_Elmer_Water-Wheel.jpg

...so when the first electric trolleys rolled in Appleton on August 16, 1886 they were hydro-electric:
Appleton_1886Aug16.jpg

Really nice site here about the history of the electric trolley systems in and around Appleton:
http://railfan45.tripod.com/appletonstreetcars/index.html

Today in Appleton the local bus company offers free trolley bus rides for the tourists using DIESEL buses that the company describes as "...reminiscent of the trolleys that were used in cities across the country one hundred years ago."

...and in Portrush Ireland the Giant’s Causeway and Bushmills Railway Company has opened up part of the old Portrush hydro-electric trolley line running STEAM engines for the tourists...

Seems a travesty for this to happen to some of the worlds first hydro-electric vehicles... sigh.
 
Five part video...

Part 1
http://www.youtube.com/watch?v=-S0m72LFNsQ
[youtube]-S0m72LFNsQ[/youtube]
Horse-drawn omnibuses. Steam and electric trams. In London, in 1908, motor buses were still outnumbered 2 to 1 by horse-buses. 1910-1919, 3000 of the first mass-produced buses built. Speeds restricted to 12 miles per hour. Windscreens outlawed until 1929. Pneumatic tires outlawed until 1928. Leyland Titan (front-engined double-decker), 1927 - "When you bury a tram, mark the spot with a Titan".

Part 2
http://www.youtube.com/watch?v=ZxGi7tvNMhE
Battery-powered Italian-made Techno Bus, 1998. 1922 London Pirate buses. Trolley buses lasted 60 years in over 50 towns and cities. First trolley bus systems, Leeds and Bradford, 1911.

Part 3
http://www.youtube.com/watch?v=WpW7iAdpKMY
For a brief time, Hastings had the largest trolley bus undertaking in the world. 1935-1940 "London Explosion", 1600 trolley buses replacing trams. 1940's tram lines condemned as inflexible and old-fashioned. Some electric trolley buses so quiet they were nicknamed "Silent Deaths". By the end of the 1920's long-distance coach fares tended to be cheaper than the train. 1950's bus industry began to lose passengers by the thousands.

Part 4
http://www.youtube.com/watch?v=M3BpKUD-Et0
The Fifty's would see off most of the countries remaining trams, Sheffield in 1960. "Mechanical horse" and trailer. Throughout the late 50's increasing central-area congestion was leading to calls for ring-roads and more parking areas. Ultimately many town centers would be radically altered, to accomodate the motor car. The trams had bowed out in Aberdeen in 1958 and in Dundee two years earlier; Edinburgh, 1956. In the Sixty's, the first motorways opened. Scaling the heights of the Great Orme in Wales ("Hill, 1 in 4 1/2"!). Last trolley bus system installed in Glasgow in 1949. Trolley buses suffered same fate as trams, condemned as inflexible and expensive. By 1962 all trolley buses gone. The first of the Routemaster "modern" diesel double-decker buses. The bus skid patch at Chiswick. New housing estates extend beyond existing trolley bus wiring. Central area development, lack of mobility, high operational costs. 1972, nobody building new trolley buses, second-hand market had dried up.

Final Part
http://www.youtube.com/watch?v=krW_7BXtHm0
Sixties-Eighties bus industry consolidation. 1986 deregulation. Car ownership continues to rise. Bus services and ridership continue to drop. 5000 old buses and trolley buses survive in museums.

If you look beyond the images of trams etc, shots of at least one Morgan trike, push carts, horse-drawn cabs, pedal bikes, motorcycles, smoking tailpipes, rising traffic of private cars...
 
Makes a 21st-century rush hour look pretty good:
http://www.youtube.com/watch?v=MSzl8SWeeOg
[youtube]MSzl8SWeeOg[/youtube]


The problem is, this doesn't look exactly like 1896:
London_1896.jpg

This car appears immediately after the opening credits. We like to think it was electric... :)

...but it looks too advanced for 1896. This is the year in England when they celebrated the repeal of the Red Flag laws with a rally race from London to Brighton:
Penny_Illustrated_Paper _1896.jpg

The cars that year were all still open carriage style, the engineering still pretty much taken from horse-drawn vehicles and bicycles...

Bit of a mystery.

locK
 
The Electrician
March 1, 1879
Experiments With The Electric Light At Liverpool.
- Last week a series of experiments were made with the electric light at the George's pier head, Liverpool. The experiments were carried out by the British Electric Light Company (Limited), who erected a shed for the accommodation of the necessary engine for the generation of the electric power, and placed above the ordinary triple lamp facing the floating bridge leading to the landing stage a large lantern, in which were two burners. The generator was one of the Gramme machines, and the motive power was supplied by one of Messrs. Cochrane and Co.'s multitubular boilers and vertical engines. A very brilliant ray of light was thrown along the floating bridge, and, notwithstanding the somewhat hazy state of the atmosphere, penetrated far over the river, proving beyond doubt the utility of the light either for signalling or for penetration of fog. The effect upon the ordinary gas lamps in the vicinity was very peculiar; the burners appeared as dim as rushlight candles, and, excepting in the immediate rays of the electric light, the locality seemed to be enshrouded in gloom. The management of the experiments was under the care of Mr. Radcliffe Ward, electrical engineer to the British Electric Light Company and Mr. Alderman Hubback, the chairman of the company.


The Marine Engineer
December 1, 1879
The Electric Light On Shipboard. - The Pacific Steam Navigation Company have begun to use the electric light in the illumination of the saloons on board their steamers. The light was tried in the saloon of the new steamship Mendoza, belonging to that company, as she came round from Liverpool to Glasgow, a simple gramme machine and service lamp, employed for the illumination of Messrs. Napier Brothers' boiler-shop, being used for the occasion. The satisfactory result of this trial is now manifest by the fact that the Pacific Company have entrusted the British Electric Light Company with the work of fitting two electric lights, produced by means of Blandy's patent, from one small gramme machine, in the saloon of the Mendoza. This ship is intended for service on the West Coast of South America. The particular method of applying the light, which has been selected by Mr. Radcliffe Ward, the electrical engineer to the British Electric Light Company, is by reflection from special reflectors in the ceiling of the saloon. The result is a beautifully diffused soft light that effectively exhibits the tasteful painting of the saloon panels. On Saturday several of the directors of the Pacific Steam Navigation Company, with some friends, had lunch on board. The shutters of the saloon were closed, and the electric light was used to illuminate the apartment throughout lunch, with the exception of a few minutes when it was turned out to show the marvellous difference between it and the usual candle-light, which involves about double the expense of the electric light. The success of the light on board the Mendoza will probably lead to the adoption of similar lighting on board all the principal ocean steamships. The illumination of the state rooms in the incandescent system, in one form or other, is likely to be accomplished before long. The boon to passengers of being able to turn on a bright settled light at desire will be very great. In this case the light will be placed in globes hermetically sealed.

From the book "Useful Information on Electric Lighting"
Killingworth Hedges
3rd Ed., January 1882
MACHINES OR GENERATORS.

For high electro-motive force another type of Gramme machine has been designed by Mr. Radcliffe Ward, and is largely employed in this country. It resembles the original pattern with a very much larger bobbin; also the field magnets are flat instead of being circular.

It is usually excited by a smaller size separate machine, when from four to six arc lights of 4000 nominal candle power each can be easily maintained. For six lights 12 horse power is required, the machine making 1000 revolutions per minute.

The Railway News
March 4, 1882
The Faure Electric Accumulator Company (Limited) formed...
Electrical Engineer - Radcliffe Ward, Esq.
file.php



American Railway Journal
April 1, 1882
Electric Tramway Cars.
The first application of electricity to the driving of tramcars in this country was lately made at the North Metropolitan Tramway works, Leytonstone. The car was fitted with a large number of Faure accumulators, ranged under the seats and communicating with a motor underneath, which, in its turn, by means of pinion-wheels, acted upon the wheels of the car. The accumulators having been charged at a dynamo-machine in the company's yard, a number of ladies and gentleman who had been invited to witness the experiment mounted upon the car and had a few runs with it up and down a quarter of a mile of tramway in Union-road, to the amazement of the inhabitants, who, for the first time in their lives, saw a tramcar full of people traveling at the rate of 7 or 8 miles an hour without any visible motive power. As proving the applicability of electric force to locomotion, the experiment was an undoubted success. The accumulators, which weighed a ton and a half, exerted, with one charging, a force equal to that of twenty-five horses for one hour - that is to say, five horses for five hours, and so on. In other words, the car could have run with its full number of passengers for half a day, with an ample allowance for waste of energy. The objection to this system, as at present carried out, rests on two grounds - first, that the car with its load of accumulators weighs as much as five tons; and, secondly, that the pinion-wheels make a loud grinding noise, such as seriously to incommode the public. Both these defects the promoters hope to be able to remedy by attaching the motor, which is practically a dynamo machine reversed, direct to the axle, thus dispensing with pinion-wheels and reducing friction. The attachment of the motor direct to the axle would necessitate in the case of tramcars the use of driving-wheels small enough to make a large number of revolutions per minute with a low rate of progression. In the case of railway trains it would enable a very high rate of speed to be attained - probably 100 miles an hour - with driving-wheels of moderate size. The promotors are sanguine enough to believe that at no distant day they may be able also to introduce electric cabs and omnibuses guided like velocipedes. All vehicles driven by electricity could, of course, with a little additional expenditure of force be lighted by the same means. It only remains to add, with reference to the electric tramcar, that it can be worked, started, stopped, and reversed by the moving of a small switch-handle, and that the promoters calculate upon being able to work tramways with electricity at one-half the cost of horse power. The experiment was carried out by Mr. Radcliffe Ward on behalf of the Faure Accumulator Company.
- The Railway Times, London.


The Electrician
July 1, 1882
RECENT INVENTIONS.
Abstracts of Specifications.
2538. Electric And Magnetic Brakes, &c.,
M. R. Ward, London. - 10th June, 1881. 6d.
The inventor does away with brake blocks, and employs a dynamo-electric machine for each carriage, the machine being connected with and put in motion by an endless band or other gearing from the axles of the carriage. These machines are so arranged that when the circuit in which they are included is closed, the action of the electric energy produced will retard the motion of the train. When the circuit is not closed the dynamo machine will revolve freely, and give out a current which may be utilised to produce heat, light, or to charge secondary batteries, which in turn shall feed excentric lamps.

The Telegraph Journal and Electrical Review
July 8, 1882
NEW COMPANY REGISTERED.
Pyramid Electric Company (Limited).— Capital: £80,000, in £1 shares. Objects: To purchase for £6,000 in cash and £16,000 in fully paid deferred shares the electric inventions of William B. Brain and Radcliffe Ward, and the business carried on by the former under the style of the Electric Blasting Apparatus Company in the Forest of Dean, Gloucestershire. Signatories (who take one share): W. B. Brain, Cinderford; R. Ward (electrical engineer), 7, Northumberland Street, Strand; A. L. Foster, East Hill, Wandsworth; T. S. Collins, Ross, Hereford ; R. Ferguson, 7, Oxford Terrace, W.; B.Le Neve Foster, East Hill, Wandsworth ; C. W. Parkes, 11, Queen Victoria Street. Directing qualification: £300 of nominal capital. Remuneration: £21 for each meeting, to be divided as the directors may determine. Registered 29th ult. by Charles Doubble, 14, Serjeant's Inn, Fleet Street.


The Telegraph Journal and Electrical Review
Jan.20, 1883
NOTES.
The directors of the Metropolitan Brush Electric Light and Power Company, Limited, have appointed Mr. Radcliffe Ward, formerly chief electrical engineer to the British Electric Light Company, Limited, to be chief electrical engineer to the company.


The Electrician
December 8, 1883
NOTES.
Alteration Of A Patent. - Notice has been given that Michael Radcliffe Ward has applied to the Commissioners of Patents for leave to file a disclaimer and memorandum of alteration of certain parts of the specification and title of his patent (No. 539, January 31, 1883) for "Improvements in or connected with tram, rail, and road cars, and other vehicles, and in machinery for driving the same by electricity." Any person intending to oppose such application must leave particulars in writing of their objections to such proposed disclaimer and memorandum of alteration with the Attorney-General's Clerk of the Patents, at Room No. 549, in the Royal Courts of Justice, London.



The Telegraphic Journal and Electrical Review
September 13, 1884.
Electricity versus Compressed Air. - Mr. Radcliffe Ward writing to the Pall Mall Gazette, in answer to Colonel Beaumont, says : - " The Leytonstone trials were arranged for and carried out by me with a purely experimental car brought from Belgium by Mr. Philippart. Colonel Beaumont must know perfectly well that the lumbering, heavy Leytonstone car by no means represents the existing electrical appliances obtainable even in the open market. Colonel Beaumont has no foundation, in fact, for making the statement that the efficiency was 1 per cent, of the initial power. Those who know anything of the subject are aware that this is an absurd statement to put forward to damage electricity as compared with compressed air. For those who do not understand, let me observe that both electricity and compressed air as applied to tramway work, act as reservoirs for energy produced from an extraneous source - say a stationary steam engine. Now, compressed air appliances are both more costly and weigh more than electrical appliances for a given power stored and operated. I believe that Colonel Beaumont claims to run eight miles with one charge on a moderately level road; an electric car has actually run 20 miles in Paris over various grades with one charge. Yet the compressed air car represents the work of years and much money spent on developing it; only a comparatively small amount of time and money has been given to the electric car, yet it already runs more than double the distance. However possible, from a purely mechanical point of view, it may be to work the underground trains by ponderous compressed air engines, such cannot compete for economy with an electric system with electric engines and accumulators."


The Telegraphic Journal and Electrical Review
October 22, 1886
CORRESPONDENCE.

The Electric Locomotive and Power Company, Limited.

Although I hope I may yet be spared the necessity of causing retardation of electric traction work any where along the line, the prospectus of the Electric Locomotive and Power Company, Limited, compels me not to remain quiescent.

The advantages claimed for Mr. Elieson's patent by many Press notices, are fully described in my patent of January 31st, 1883, and numbered 539 and 530*.

Mr. Elieson's patent is dated nearly a year and a half later than mine, viz, June 6th, 1884, and numbered 8,654.

I, however, do not wish the electrical world to think that I give the motor a movement of running round a table, as I should know very well that the additional power required for that purpose would be pure and unnecessary loss; enough to make all the difference probably in many cases of the possibility of competing with other methods of traction.

I have had to give formal notice, through my solicitors, to the Electric Locomotive and Power Company, Limited, that Mr. Elieson's patent infringes mine.

The electric field is large enough for us all; one man develops one point, one another.

Radcliffe Ward.

10a, Great Queen Street, Westminster, B.W., October 20th, 1886.

Engineering, April 8, 1888
ELECTRICAL LOCOMOTION
To the Editor of Engineering

Sir, - In Engineering of 2nd March, page 214, in Mr. William Geipel's paper read before the Institute of Mechanical Engineers, occurs this passage (speaking of accumulators as applied to electric traction): "The problem was first attempted by Mr. Reckenzaun."

It is in no spirit-grudging praise to a fellow worker that I write this; those of us who have been pioneers in electrical locomotion can well afford to be accurate in the history of the various events forming historical epoques.

Mr. Geipel has made a mistake; so far as this country is concerned, the first electric street car work was done at the beginning of 1882 on the North Metropolitan Tramways, under arrangements with that company made by me, and under my supervision. Some very important points were then ascertained in connection with accumulators on street cars. Reference to these trials was made in the press early in March, 1882.

It was in the spring of the year following that the Electrical Power Storage Company was operated at Kew.

But before even 1882, i.e., in 1881, M. Phillipot on the Continent had had cars running. No one conversant with the events succeeding the advent of the Faure accumulator can forget how much both accumulators and consequently traction owe to M. Phillipot's energy and foresight. The first car run in this country was built abroad, and due to his work.

Your obedient servant,

Radcliffe Ward,
London, April 3, 1888.

The Electrical Engineer
May 18, 1888
PROVISIONAL PATENTS, 1888.
May 9
6927. Improvements in electrically propelled vehicles, and appliances connected therewith. Michael Radcliffe Ward, 55, Chancery-lane, London, W.C.

May 10
6988 Improvements in the method and means of supplying electrically-worked vehicles with fresh sets of accumulators or equivalent sources of electricity. Michael Radcliffe Ward, 55, Chancery-lane, London, W.C.

The Electrical World
July 14, 1888
ENGLISH NOTES.

London, June 27, 1888.
The Electric Lighting of Trains.
The electric lighting of railway carriages, as carried out by the Great Northern Railway Company, has made considerable progress. The arrangement adopted is designed by Mr. Radcliffe Ward, and consists of a dynamo and set of accumulator cells which are carried in the guard's van. The dynamo is driven from the axle of the van through a special gearing device of Mr. Ward's by which the direction of rotation of the dynamo is constant and independent of the direction in which the van is moving. The light meets with much appreciation from the passengers.

The Electrician October 12, 1888
NEW COMPANIES REGISTERED.
WARD ELECTRICAL CAR COMPANY (LIMITED). - This company was registered on the 2nd inst., with a capital of £300,000 in £10 shares, to carry on business as electrical and mechanical engineers, carriage builders, railway, tramway and road proprietors. An unregistered agreement of 1st inst., between Michael Radcliffe Ward and A. A. Mackintosh, will be adopted. The subscribers are :-

...................................................Shares.

J.W.Oxley, 29, Muriel-street, N., shorthand writer...... 1
H.Mayor, 9, Bridgewater square, E.C., shorthand writer.. 1
L.H.Benjamin, 29, Sandringham-road, E., clerk........... 1
A.V.W.Capps, 18, Kelvin-road, N., shorthand writer...... 1
A.W.Wells, Greenhill-park, Harlesden, accountant........ 1
J.B.Lawson, 30, Cambridge-street, S.W., assist.secretary 1

The number of directors is not to be less than 3, nor more than 7; the subscribers are to appoint the first, and act ad interim; qualification, 50 shares; remuneration, £2,000 per annum.

Western Electrician November 17, 1888
THE ELECTRIC MOTOR.
Omnibuses driven by power from accumulators are said to be running for conveyance of passengers in Paris. A London paper in referring to this subject says: Some day soon we may have electric omnibuses plying in the streets of London; indeed, an experimental 'bus may occasionally be seen making a journey in the evening in some of the West End streets. The vehicle is the invention of Radcliffe Ward, who has been connected wiih several electric companies. The electric 'bus, to carry 12 persons and the engineer, costs about 20 per cent. more than an ordinary horse omnibus, but the expense of working and maintenance is said to be 50 per cent. less.

Western Electrician December 29, 1888
THE ELECTRIC MOTOR.
A London paper says: "The Ward electric omnibus is often to be seen on its peregrinations in the early or late hours. It is said to be the only one in the world actually at present able to run on the ordinary streets without rails, and taking its place among other vehicles drawn by horses. The electric omnibus said to be running in Paris turns out to be a tramcar, and not a true omnibus. The Ward electric omnibus, however, is meant to take its place without preparation of the roads, and has now been tried on all sorts of road to be met with on London streets - macadam, paved, asphalt, wood blocks, etc. - and has been successfully run upon the most difficult up and down hill grades on which vans are run in London." The London Electrician says of the vehicle: "Until we have taken an opportunity to inspect Mr. Radcliffe Ward's 'electric omnibus' we do not care to express a definite opinion upon its merits. It may be a feasible idea so long as it is only proposed to run on asphalt roads without serious gradients. But what will the authorities say? Will not the red flag clause come in? Anyhow, we think it is a great deal too bad of the daily papers to insert such solemn foolery on the subject as has been going the rounds this week. After recounting in great detail the route taken in a trial run, the newspapers assure us that 'This is the only electrical omnibus in the world capable of steering to right and left.' They omit, however, to state that it is also capable of standing still, of turning round, and even of running backward! Truly this is a marvelous age!"

The Railway Times
Jan. 5, 1889
PASSING NOTES.
A licence, the first of the kind issued, has just been granted to the inventor of the electrical omnibus, Mr. Radcliffe Ward, of the Ward Electrical Car Company, Limited. It is claimed for the electrical omnibus that it is worked much more economically than with horse-power, and that drivers will have a much easier and more comfortable task.

The Railway Times, Feb.16, 1889
THE ELECTRICAL OMNIBUS.
Some experiments have recently been made at the West-end with an electrical omnibus, and these have been pretty generally pronounced as highly successful, a good rate of speed having been attained, and perfect control secured over the vehicle during its passage through the crowded thoroughfares. The invention is that of Mr. Radcliffe Ward, who for many years past has been associated with electrical undertakings, and who superintended the trial trips which were made some time ago with the electrical tramcars on the North Metropolitan tramways. Should Mr. Ward's latest invention perform all that is required of it - of which there seems little or no doubt - its adoption for various kinds of vehicles will work a thorough revolution in our street traffic, aud at the present juncture one cannot help reflecting upon the fact that when horse-power is dispensed with a vast amount of suffering will be spared the equine race, which daring the prevalence of heavy snowstorms and keen frosty weather has great and untold hardships to contend with. Looking at the matter on the score of economy, which of course is one of its most important bearings, it appears that electrical omnibuses, similar to Mr. Radcliffe Ward's invention, can be worked at about half the cost of those of our great metropolitan companies. With economy it couples safety, ease, and convenience, and a rate of speed equal or superior to that which is now attained by horse traction. But Mr. Ward's invention is likely to prove very generally useful, as it can be applied to cabs, railway goods and parcels vans, dust carts, and other vehicles of the kind. It is thought in particular by the inventor that our great railway companies would effect a large saving by the adoption of electrical vans, and already, it is understood, Mr. Ward has been in communication with all the chief managers in the United Kingdom and abroad. It would seem indeed that the day is not far distant when vehicles with electricity for their motive power will be brought pretty generally into use. Of course at first there will probably be some slight prejudice against them, but the sceptical should bear in mind that in the early days of steam the outcry against the new motive power was loud and incessant, and a no less distinguished person than the late Lord Derby asserted with due gravity that he would swallow the first steamship which crossed the Atlantic! During a recent visit to the premises of the Ward Electrical Car Company (Limited), in James street, Haymarket, an opportunity was afforded of inspecting the building of the first electric goods cart, the contract for which has been handed over by Mr. Ward to the company. It should, moreover, be mentioned that the company possesses many valuable patents. The importance of this new development of electricity cannot be overestimated, and that the Ward Electrical Car Company (Limited) has a valuable property in its hands there can be no question. Indeed, it would almost seem that a new era is dawning, when horse traction with its many inconveniences, its costliness, and other drawbacks, will be in a great measure superseded by the introduction of vehicles propelled by electricity and steered and directed with the utmost nicety and precision.

Scientific American Supplement
March 2, 1889
AN ELECTRIC OMNIBUS.

In the year 1881 the introduction of the Faure accumulator rendered possible the application of stored electrical energy to the purposes of tramway work, and the first electric car made was run by Mr. Radcliffe Ward on the Leytonstone line in 1882. M. Philippart, who had the introduction of the Faure battery on his hands, conceived the idea of applying it at once to tramcars, and arrangements were made with Mr. George Richardson, then chairman of the North Metropolitan Tramways Company, to experiment on the Leytonstone line. M. Philippart had this, the first electric car, constructed in Belgium and sent over to England, and the working of the car was in the hands of Mr. Radcliffe Ward. Numerous experiments were made, and some fundamental patents in variable-speed gearing, and details of the construction, which became evident on application in practice, were taken out by Mr. Ward. These experiments were only abandoned because of the unsatisfactory condition commercially of the only storage battery on the market. Some little time after, he started the construction of a car to run over the ordinary roads, but again, owing to the difficulty of obtaining good accumulators, this was dropped. In the early summer of 1887 he built an electric cab which was exhibited and run on the roads at Brighton, and it was about this time that Mr. Magnus Voik also built his electric dog cart, which was described in the illustrated papers, and there excited the attention of the Sultan of Turkey, for whom Mr. Volk has recently constructed a similar vehicle.

In the summer of 1888 the first electrical omnibus commenced to make runs over the London streets in the early morning hours. This omnibus is not of the type that will be used for running, for which purpose a model omnibus will be designed, and special cells ordered to fit this. In the present case the best storage cells obtainable for the purpose were used, and the omnibus built to carry these, and the vehicle is as appears in the illustration. Many experiments have been made with this omnibus on all sorts of roads, and under varying conditions, and Mr. Ward is now in the position of knowing experimentally exactly what tractive power is necessary for driving vehicles on ordinary roads - a matter of the utmost importance in the design and working of electric vehicles of this kind, and which has until now been more or less problematical.

From time to time we have had a note about the working of the electric omnibus, and have watched with interest its progress, knowing that such work is the inception of a vast development of the practical application of electricity to ordinary civilized life. It is therefore fitting that a representative of the Electrical Engineer should have been the first to officially take a ride upon the electrical omnibus. Starting one morning last week, at 7 A.M., from a mews in Cromwell Road, South Kensington, we had an opportunity of judging the capabilities of the new car. It has the appearance of something between an ordinary closed bus without top seats and a parcels delivery van, of course without horses, and is capable of seating twelve persons comfortably. The driver sits or stands in front, with a switch and resistance frame, and handle with worm gearing to steer with, and a powerful foot brake. It is powerfully built to sustain the weight of accumulators, which slide in trays under the seats.

RadcliffeWard.jpg

The cells are the new type E.P.S. traction cells, and were the first set of this type made by the Electrical Power Storage Company. The motors, of which there are two, are Gramme machines, built by Crompton & Co., Limited, which have proved to be thoroughly reliable and efficient. They are connected with steel chain gearing by Hans Renold, of Manchester, which are also thoroughly satisfactory. Mr. Ward has tried all the available methods - friction, chain, belts, and toothed wheels; they all have advantages for special conditions, but he finds the gearing he has adopted the best for these circumstances. The double-speed gearing alluded to has not been fitted to the first omnibus, but will be fitted for the cars to be used for ordinary work. The framework of the omnibus was constructed at the works of the Metropolitan Railway Carriage and Wagon Company, Limited, Saltley; the wheels are of special make to Mr. Ward's designs.

The car, which had been running the day before, started off easily and was run along Cromwell Road and Knightsbridge, turning into Hyde Park at the Albert Gate. The morning was bright and clear, and the ride was very pleasant. Not many people were about at this early hour, but the early tradesmen and workmen were, of course, moderately astonished at seeing the novelty. What it was, however, there could be no mistake about, for the lettering on the omnibus is large enough for all to read. Through Hyde Park was an easy and pleasant run; turning up by Hyde Park Corner the bus went on up the hill and out at the gate and along Upper Brook Street, across Bond Street into Regent Street, and thence into James Street, Haymarket. There is no doubt that the question of electrical road vehicles has been well tackled and its possibility demonstrated, and the application to ordinary work for many purposes is evidently only a matter of time.

The speed of the car is about six to seven miles an hour, about the same speed as that of an ordinary bus; a run has been made without stopping, for instance, from Notting Hill to Golden Square - a distance of 3 1/2 miles - in 30 minutes. The running of the car has not been attempted among the ordinary traffic in the daytime at present, but there would be no great difficulty about this, especially for heavy and slow-moving wagons - such as railway delivery vans, dust carts, etc.; and with proper means of thorough control these would admit of taking their place in a crowded string of vehicles in the thickest London streets. The question of the slip of wheels has been freely tested, the cars having been run successfully on the slippiest days. This is mostly a matter of sanding the road, and a sand tube can be easily arranged in front of the wheels. At the same time, there are in this case no horses to slip down. Another point is the saving in dust from the droppings; the wear and tear will also be less, for this is greatly due to the pounding of the horses' feet like eight sledge hammers on the pavement.

The adoption of electric vehicles commercially is, of course, largely a question of cost.

The power necessary to drive such vehicles has now been ascertained, and the cost per mile for various vehicles calculated, and Mr. Radcliffe Ward claims that the result, all under guarantee from responsible manufacturers, shows a very considerable saving over the cost of horse vans. There is little doubt, if this means of traction proves successful in practical work, that the employment in towns, and in connection with railway collecting and traveling generally, the introduction of large numbers of electric vehicles would give an immense impetus to the electric industry. - Electrical Engineer.


Scientific American
May 18, 1889.
The Electrical Omnibus In London.

The electrical omnibus lately left the depot of the Ward Electrical Car Company, and ran to Euston Station. Some of the directors and the manager of the Liverpool Tramways Company were awaiting it, with Sir George Baden-Powell, M.P., and Mr. Houlding, the chairman of the sanitary committee of the Liverpool corporation. The omnibus returned by way of Euston Road, Great Portland Street, and Regent Street, to the company's depot at James Street, Haymarket. It came through the crowded traffic without exciting any alarm on the part of even private carriage horses.


The Electrical Engineer
July 5, 1889
NOTES.
The Electric Omnibus. - Another run was made by Ward's electrical street car on Tuesday morning through many crowded thoroughfares. The omnibus ran through the City from Islington to the depot, James-street, Haymarket, at a speed in excess of 8 1/2 miles per hour.

The Electrical Engineer, July 12, 1889
NOTES.
Electric Omnibus. - Mr. Ratcliffe Ward and Mr. F. B. Behr have exhibited Ward's electrical omnibus to the Shah in the grounds of Buckingham Palace. His Majesty seemed greatly interested in the performance of the omnibus, which moved and turned round with ease and precision.

The Electrical Engineer
July 26, 1889
Slow Goods Traffic. - Whatever objections might be raised by timid people to the introduction of quickly-moving electrically-propelled appliances on the streets of London, such as for omnibuses or cabs, one cannot but be struck with the field of usefulness for a slow-speed electric van on seeing the large and heavy goods vans owned by the railway companies, slowly drawn along by four immense horses. Here, if anywhere, is great scope for the electric van, and the speed, not being great, would give complete control over the vehicle. The application of the idea of Mr. Radcliffe Ward's omnibus to good's-vans has been under contemplation by the railway companies, and, while electric tramways and telpher lines multiply, we may possibly soon see the employment in commercial life of electric vehicles without rails commending itself to railway companies for the slow goods traffic in towns.

The Electrical Engineer
May 9, 1890
Electric Omnibuses. - The Ward Electric Car Company, Limited, has removed its offices to 38, Gracechurch-street, E C., and premises have also been taken at Dacre-street, Westminster, where the experimental omnibus can be seen by appointment. The company have contracted with the Electric Construction Corporation, Limited, for their first line of electrical omnibuses to run between King's Cross and Charing Cross.

Looks like Radcliffe may have moved offices to be next door to one of the new electric utilities:
The Electrician, October 31, 1890
THE STATIONS OF THE WESTMINISTER ELECTRIC SUPPLY CORPORATION.
The engine-room at Dacre-street has been considerably improved of late, and the two Crompton dynamos and Willans engines are now snugly arranged beneath a gallery containing the switchboard; the whole having the air of an engine-room on board ship. A set of Crompton-Howell accumulators, of a capacity of 500 ampere hours, provides for the lighting of Victoria Mansions, the neighbouring residential flats and hotel, together with other circuits, which extend as far as the west end of Victoria-street, and Messrs. Peto’s works in Pimlico. The ordinary full load is now about 600 amperes at 102 volts. This little station will disappear as soon as the current can be supplied from the other stations.

Railway World
September 20, 1890
RAILWAY INDUSTRIES.
—The latest plan of propelling trains by electricity has been patented by M. R. Ward, of London. Instead of running the carriage of a train on wheels on the permanent way, the inventor proposes fixing slides of a suitable form to the carriages, which slides slide on a film of water. The water is held in U-shaped rails, which take the place of the ordinary rails. The carriages are propelled by an electric motor, or motors, supplied with electricity from accumulators or conductors along the railway, suitably connected to wheels on the sliding carriage, or on a separate rail in the centre of the permanent way or on flanged-shaped rails projecting from the inner sides of the sliding rails.

The Electrical Engineer
June 2, 1890
Electrical Omnibus. - As an appropriate conclusion to the trip of the Lord Mayor to the Electrical Exhibition at Edinburgh, he was met at Euston on his return by the electrical omnibus owned by the Ward Electrical Car Company, Limited, of 38, Gracechurch-street. The omnibus, which was driven by Mr. Radcliffe Ward, the managing director, conveyed his lordship and the town clerk to the Mansion House in a most satisfactory manner, and very quickly, showing itself to be under most perfect control. As we have already stated, the company have in hand a complete line of omnibuses, to run from Charing Cross to King's Cross, with which it is intended to demonstrate commercially the economy, humanity, and cleanliness of electricity over horses, and the facility for locomotion in towns without the aid of tramway lines.

The Telegraphic Journal and Electrical Review
December 12, 1890
The Ward Electrical Car Company, Limited.

The first annual general meeting of this company took place at the depot, 12, Dacre Street, Westminster, on Wednesday, the 3rd December, 1890, Mr. E. R. Cummins in the chair.

The Chairman reported that the details of the contract for the construction of the first line of omnibuses, and for the charging station, had now been finally settled with the Electric Construction Corporation, Limited, and that the work will be at once proceeded with; also that the Board intended, as soon as this line is running, to form a sub-company for London, to take over the station and omnibuses, and to work a large line of vehicles; that the various authorities concerned view with great interest the pending introduction of electrical carriages on the streets of London; and that it is intended to form sub-companies for other places in the U.K. and abroad.

The Managing Director then reported having just received an order for an electrical van for trade purposes from a firm who intend to largely introduce them, and that an important tramway company had practically concluded to place a contract with this company.

The Telegraphic Journal and Electrical Review
December 12, 1890
THE ELECTRIC CONSTRUCTION CORPORATION, LIMITED.

The vulgar refrain, "It's wonderful how they do it, but they do," has been ringing in our heads ever since we read the report and balance-sheet of one of the large electrical companies the other day. But light has broken upon our benighted minds, for the Oracle (see another page) has spoken. Oracles are usually ambiguous - not so the daily of that name in its article of the 8th inst. It points out that the very important item of £128,117 in the balance-sheet of the Electric Construction Corporation represents shares in subsidiary companies at par, shares included in the original purchase at nominal value, and debts due by subsidiary companies. It then proceeds to dissect the subsidiary companies, and throws doubt on the par value of their shares. The companies mentioned are the Foreign and Colonial Electrical Power Storage Company and the Electrical Construction and Maintenance Company. As the profit and loss account of the E.C.C. is based on this valuation, it suggests that the directors have not been discreet in reckoning the profit at the figure they have done.

The same idea has occurred to others. As the Oracle says, the directors are very able men, and we will add the suggestion that had they been able to convert the mass of paper they hold into sterling, they would doubtless have done so. If the value of a thing is what it will fetch, and these shares have not fetched par, it is reasonable to conclude that they are not worth it. No allusion is made in the article under review to the Electric Traction Syndicate, who paid heavily for promotion, and the right to use E.P.S. cells; and so we suppose we must not class the undertaking as a subsidiary company. Perhaps it is better than a subsidiary company, as it is reported to have disgorged cash, and not paper. So much the better for the Construction Corporation, and worse for the Traction Company. There is one other item to which our contemporary does not call attention - the cash balance. Perhaps they thought it was borrowed for the occasion, or hired, to speak more correctly—a kind of dress-coat in which to appear at the general meeting.

We have known men who never had a cash balance, unless they had raised it on loan, and whose only assets consisted of pawn-tickets. But companies are obliged to have their accounts audited, which is a good thing - especially for the auditors.

Some years ago, at a meeting of the old E.P.S. Company, when the younger brother of this balance-sheet was presented, and a paper profit shown, a shareholder, on asking why the profit would not be divided, was met by the chairman, who, with his usual directness, naively replied, "Because we haven't got it." They have it now - somehow, and are going to divide it.

We note that the Construction Corporation has taken up the Ward Omnibus business, and rumour credits it with a third of the City lighting, so it will soon have its hands full, and we sincerely hope its large works at Bushbury, not forgetting Millwall, too, likewise its coffers, for they will have to bear a strain under which paper might give way. We hope they will prosper in the good time coming - the electrical sweet by-and-bye.
--------------------------------------

Premature Announcements
Nothing depreciates the value of an invention, or application thereof, or lessens the confidence of the public, more than premature announcements of what is intended to be done. Yet for months and months has a contemporary stated that "in a few weeks" electric omnibuses will be plying on London streets, whilst a short time ago a representative of our contemporary stated that he saw one of the "new 'buses " carrying passengers. That statement was not only erroneous but the chairman of the Ward Electrical Car Company, at the meeting last week, actually said that the details of the contract for the first line of omnibuses had only just been settled.

La Lumiere Electrique
Samedi 14 Mars 1891
L'omnibus électrique de Londres ne se décourage pas. Il a fait une nouvelle apparition dans les rues de la Cité le 26 février. La première course était conduite par M. Radcliff Ward, son inventeur. Les manoeuvres ont été exécutées sans obstacle, au milieu des voies les plus fréquentées du voisinage de la Banque. Les chevaux ne paraissent point avoir été effrayés.

L'inventeur prétend que la traction coûtera moins avec ses accumulateurs qu'avec les chevaux. Nous ignorons sur quelles bases il s'appuie pour émettre une assertion bien des fois réitérée. Mais la persévérance avec laquelle les expéliences se succèdent donne lieu de penser que tant d'efforts ne seront point inutilement prodigués.

Sold some stock, August, 1891:
Ward_Electrical_Car_Company_1891.png


The Telegraphic Journal and Electrical Review
December 4, 1891
NEW APPLICATIONS FOR ELECTRIC LIGHTING, ELECTRIC RAILWAY AND TRAMWAY POWERS.

The London Gazette announces that the following powers are to be applied for to Parliament, and the Board of Trade :-
SNIP
Ward's Electrical Car Company, Limited. - Application to Parliament for power to Ward Electrical Car Company, Limited, and Secretary of State, County Council, and other authorities to enter into agreements with respect to use of electrical vehicles on streets &c.; also other incidental powers.

Sadly, here the trail goes cold. No more mentions of Radcliffe or his battery-electric omnibuses anywhere. Pretty sure the world voted to go battery-free, with buses connected to "trollers" etc and live wires and rails...

But seen here:
http://www.glias.org.uk/news/244news.html
Electric Taxi Cabs

Currently there is a lot of discussion about providing green vehicles in London. A lot of the discussion seems to be centred around taxi cabs.

Without entering into this debate, it might be of interest to learn that the current move to establish an electric cab fleet in London is not a new concept. The first electric cabs operated in London from 19 August 1897.

These cabs were called 'Humming Birds' because they ran so quietly. Because of this fact they were considered a hazard, as neither people nor horses could hear them. Today, in addition to the reduced atmospheric pollution, we would consider the reduction in noise pollution as a bonus!

According to available literature, their biggest problems seem to have been with tyres not, as one would expect, the batteries! This was around the same time as the pneumatic tyre was patented in 1888 by J B Dunlop (later revoked in favour of R W Thomson whose patent was taken out in France 1846 & the US 1847) that went into production in 1890 when he went into partnership with W H Du Cross.

The company that constructed these vehicles was the London Electric Cab Co, located in Juxton Street, Lambeth in London. They were in business between 12 November 1896 to 8 August 1899. The company was liquidated in 1899. The cab fleet seems to have disappeared over time and most people seem to have forgotten that it ever existed.

The London Electric Cab Co was the successor to the Ward Electrical Car Co of London that was founded by Radcliff Ward who is mentioned as designing a battery-driven bus. In 1896 they received the capital to form a bus/cab syndicate and later became the London Electric Omnibus Co.

Thus, the electric cab has already played an important part in the development of the transport system of Victorian London — not what one would have expected! Dan Little
 
From the book "Tube, train, tram, and car; or Up-to-date locomotion", by Arthur Henry Beavan
1903

CHAPTER XV

HORSELESS VEHICLES ELECTRICAL AND OTHERWISE


"Cars without horses will go." - MOTHER SHIPTON.

PRIVATE MOTOR-CARS

THE above prediction, constantly quoted at the advent of railways, is being realised with the utmost exactness. Except the late craze for cycling, nothing is more remarkable than the boom in the motor-car.

Prior to the passing of the " Locomotives on Highways Act" in 1896, motoring was an impossibility. Even then its advance was slow, and until about three years ago motor-cars were decidedly unpopular. The London street boys - miniature representatives of public opinion - derided them, and, with their usual fiendish lack of sympathy, rejoiced when they came to grief; while 'bus-drivers and cabmen ironically likened all automobiles to traction engines, cherishing the delusion that they continually broke down, cost a small fortune to maintain, and, worse than all, dislocated every bone in their occupants' bodies.

This contempt reached a climax when certain lemon-coloured electric cabs were seen plying for hire, ugly to look at and limited in speed ; while simultaneously a line of steam omnibuses, so cumbersome and weighty as to really merit comparison with traction engines, began to run to Victoria Station.

Tube_train_tram_and_car_1903Fig26.jpg

But an extraordinary and rapid change has come over popular taste, and nothing is needed to bring motor-cars into universal use, save a lowering of their cost ; for even the cheapest are rather beyond the means of people with moderate incomes. This may be one reason why they are so fashionable, though the King's marked predilection for travelling by them has done much to make "motoring" the correct thing; and His Majesty has recently consented to become a patron of the Automobile Club.

Before the advent of the motor-car, Society, though tired of "biking" and craving for a novelty, could not tolerate the notion of being seen in any other than a well-horsed vehicle. Society now thinks differently, as evidenced by a stroll in the Park during the season. There, in the midst of graceful landaus and other equipages drawn by the most splendid horses in the world, may be seen endless electric and steam barouches, broughams, victorias, and cars, all perfectly noiseless, and magnificent petrol motor-cars (not noiseless!), resplendent with brass and oxidised silver fittings and upholstered in morocco, whose fair occupants are smartly dressed in tailor-made motoring gowns or, on warm days, in ordinary carriage toilettes.

Some of the fashionable hotels own big cars and run them in lieu of coaches for their customers' benefit to various places near London; while, to the vexation of omnibus companies, motor waggonettes, duly authorised by Scotland Yard, ply to and from Putney and Piccadilly Circus, always "full up" with people, no longer the butt (as they used to be), but the envy, of pedestrians. And these public cars, though not perfect, are an advance upon omnibuses, and do not break down more frequently than horsed conveyances.

In the country motor-cars have become indispensable, more especially to landed proprietors, with houses always full of visitors who, with their luggage, have to be conveyed to and from the station. They are much used for race-meetings and for conveying shooting parties to the covert side, stubble, or moor, in comfort, golfers to the links, and fishermen to the riverbank; picnics would be failures without them; and delightful excursions to all kinds of outlying places are arranged by the host, proud of "motoring" his guests, who thus are made acquainted with bits of beautiful scenery they would otherwise have remained ignorant of; as in the case of the King's and Queen's visit to Chatsworth last January, when a feature of the programme was a series of motor-car tours in North and West Derbyshire. In fact, the motor is a most important factor in English country life, and the art of managing it is gradually superseding that of riding, driving, and four-in-hand coaching. Eheu !

Horseless vehicles are not actual novelties. They have merely been in abeyance while the perfecting of our iron roads has proceeded. The earliest practical specimen emanated from an inventor named Guyniot a hundred and thirty years ago, but nothing commercially serious came of it, and the idea slept. In 1786 William Symington produced his steam-engine, to run upon an ordinary road. It had the condenser and the ratchet-motion used in his steamboat, an invention of which he was the originator. The boiler and funnel were in the front, a coach on C-springs between them, and the steering gear, with a kind of bicycle handle-bar, at the rear. The machine, it was said, worked well.

Then, in 1821, a steam-coach by Griffiths attracted much attention, being the first self-propelled vehicle to ply for passengers on British roads. It had a boiler with water-tubes as now used in the Serpollet and Belleville systems for motor-cars. In appearance it somewhat resembled the Symington, but carried a double coach mounted on railway springs.

Walter Hancock's three-wheeled steam-coach of 1828 looked like a tricycle with a big funnel, and was propelled by a pair of oscillating cylinders working the double-cranked axle of the steering-wheel.

In 1859 the Marquis of Stafford had a steam-coach built that weighed less than a ton. 'With its chain-action it anticipated the modern bicycle : in front it had a kind of bath-chair seat facing the steering gear. In this vehicle Lord Stafford and party of three made trips at from nine to twelve miles an hour over heavy roads without any difficulty, it being easy to guide and remarkably steady. In these steam coaches the funnels appear to have been placed in the rear.

All these ideas, though from one point of view crude, undoubtedly represented

"... such refraction of events
As often rises ere they rise."

The motor-car industry in Great Britain is flourishing, and it is estimated that out of a total of some ten thousand horseless carriages in the country one-tenth are of home manufacture (the remainder being French or American), a small proportion, truly, but a great increase upon the number built in 1890; and at the Reliability Trials of the Automobile Club last September (1902), thirty-five of British make took part in the contest, and only twenty-six of Continental or American origin, a most satisfactory feature to those who are eager to see British makers second to none in motor-car construction, especially as the aim of the competition was to encourage the building of machines that would be thoroughly dependable in all conditions of road and weather.

At the last Crystal Palace Automobile Show, national vanity was certainly gratified. Not only was the exhibition the largest ever held in the country, but

Tube_train_tram_and_car_1903Fig27.jpg
By permission of the Fischer Motor Vehicle Syndicate, London.
FIG. 27. A "CROWDUS" ELECTRIC CARRIAGE

was a concrete example of the remarkable progress of an industry which, so far as these islands are concerned, started lamentably late in the day. There were brought together at the Crystal Palace about seven hundred and fifty motor-propelled vehicles of every class, ranging from the powerful steam lorry, capable of transporting a load of 7 1/2 tons, to the latest " flier," light and elegant of construction, and costing anything up to some £3,000. Motor tricycles and bicycles formed a strong section. The cosmopolitan character of the exhibition is shown by the fact that among the two hundred or so exhibitors were the leading English, French, Dutch, Italian, and German firms.

By general consent the show was regarded to have made plain the fact that in efficiency and reliability the English maker has drawn at least level with his foreign rival, while, so far as the production of motors for commercial purposes is concerned, he still stands far ahead.

Automobiles are of all sizes up to magnificent 40- or 60-horse-power racers. For town use there are broughams, victorias, landaus, and landaulettes (open or closable for country work), the phaeton with four seats, placed two by two, looking forward, and the tonneau a kind of small omnibus with a movable back with the two rear seats in the corners.

Sometimes cars are run with six seats arranged in three pairs, with plenty of room both for the driver and the coveted box-seats. Most cars of either pattern have a glass front screen, while some have a fixed roof as well. The greater number are driven by the use of petrol, the machinery being in front under what is called the "bonnet," and the ease with which the oil can be obtained has great advantages for a touring expedition.

Steam is also employed for motor-cars, and is practically noiseless, but there are obvious objections to its use, however skilfully the working parts are constructed.

In London, electromobiles are extremely popular, and no wonder, for there is no smell, no vibration, and no noise; the speed attainable is great, and they are under perfect control, advantages involving the use of storage batteries, the recharging of which is a lengthy operation, seldom taking less than five hours. But, as Mr. Llewellyn Preece observed about twelve months ago, "this condition of affairs is gradually disappearing; private electric carriages are now to be seen in London, and their number is increasing. Cars can be obtained capable of running to Brighton, Portsmouth, and other places within seventy or eighty miles of the metropolis." (i.e. on one charge. They may be called " short-tour cars.")

View attachment 1

Electric town-cars are generally of the landaulette type for theatre-going, and for paying visits in such inaccessible suburbs as Stoke Newington, Balham, and Hampstead. They carry from two to four passengers, can attain a speed of fourteen miles an hour, and will run forty miles without recharging.

A long-distance electric car, to compete with petrol, has yet to be made, but it will shortly be possible to obtain one of moderate weight at a reasonable price that will cover one hundred and twenty miles on a single charge; and, as a matter of fact, tours of more than a thousand miles (from London to Glasgow and back) have been satisfactorily accomplished.

PUBLIC CONVEYANCES

The perfect motor-omnibus, and, for that matter, the perfect 'bus of any kind, has yet to arise, and is suggestive of Darwinism in the length of time required for its evolution. But can London and the long-suffering traveller wait ten million years or so - putting up mean-while with the inconvenience of existing vehicles until
the omnibus companies wake up, or are superseded by more enterprising business adventurers?

Why, for instance, should all omnibuses be stuffy? There was a reason for it when their floors were covered with straw and they were shut in with doors. But now there are no doors, and there is nothing to harbour damp; yet even when the passengers sitting at the entrance of the omnibus are assailed by icy blasts, those at the far end are in an atmosphere of mustiness strongly suggestive of stables. Then, on days when the roads are greasy, these vehicles crawl along, often taking an hour and a half to travel from Fulham to Liverpool Street (a distance of about six miles). Upon such minor nuisances and annoyances as the exiguous space (about 2 feet 6 inches) between the seats, ticket-giving and ticket-examining, the jarring of brakes, the rattling of loose coach-bolts, the lurching of the top-heavy structure, the windows that will not open, the glare and dust in summer, the Cimmerian darkness in winter and at night, the stout people who take up too much room, the wet umbrellas and odoriferous waterproof cloaks, the exasperating and often unnecessary stopping every few hundred yards to the distress of the poor animals, it is needless to dilate. We experience them every day of our lives.

But better times are in store for the horses, and better times for our children (perhaps even for ourselves), who will see in London's streets electric omnibuses in which it will be a delight to travel.

Between Oxford Circus and Cricklewood (not far from Hendon) are now running improved motor-omnibuses built in Scotland for a London syndicate, to the requirements of the Chief Commissioner of Police. It will be remembered that some years ago a very large Thorneycroft steam 'bus plied for custom. It carried thirty-six passengers, but, turning the scale at three tons, it was of illegal weight as a vehicle, and should have come under the definition of a traction engine with speed limited to four miles an hour, and preceded by a man with a red flag. So it was ultimately withdrawn.

But the new "Stirling" steam omnibuses are only 32 cwt. when empty. The engine is of 12 horse-power, and is geared for three forward speeds of 4 1/2, 9, and 14 miles per hour, with one slow reversing speed, while by a clever contrivance the driving machinery ceases to act if 14.2 miles be exceeded, both steering gear and brakes being under perfect control. Handsomely fitted up, with large windows that can be taken bodily out in hot weather, and with comfortable leather-covered spring seats, the new 'buses are a decided step in the right direction.

At the last meeting of the London General Omnibus Company the deputy-chairman stated that there was no kind of motor traction that would pay the company to take up. If anything was done in that direction it would be in the use of petrol. Steam was of no use, because of the great vibration, and he doubted if the Government would permit 15,000 such omnibuses to run over the streets. In his opinion the time to take up motor omnibuses had not yet arrived.

But the London Road Car Company has taken a different and more far-sighted view of the situation, and a combination of petrol and electricity is now to be tested by it.

Cars of the Fischer combination pattern have arrived from America. Each has a 10 horse-power petrol engine which drives a dynamo, the current from which is used to work a motor acting directly on the wheels.

This may, perhaps, seem a needless complication, but there is much method in it. A 10 horse-power engine is not sufficiently powerful to drive a fully-laden 'bus up a hill at any reasonable pace, but there are many places where a 'bus will run by its own weight, and needs no engine. The new car is provided with accumulators.

When little or no power is required by the motor, the current is switched on to the accumulators, so as to store up a reserve for hill-climbing. So when necessary, the car draws on the reserve in the accumulators, and with them and the dynamo develops not 10 but 20 horse-power, enough to take it up and over any hill that 'buses climb.

The manager of the Road Car Company is of opinion that the new vehicles will carry from twelve to twenty

Tube_train_tram_and_car_1903Fig29.jpg
By permission of the Fischer Motor Vehicle Syndicate, Ltd., London
FIG. 29. A "FISCHER" COMBINATION OMNIBUS
Capacity fifteen passengers; weight, 2 tons 13 cwt.; speed, 12 miles an hour

passengers. Owing to the greater speed of the motors, however, the passenger accommodation provided by, say, half a dozen such cars would be greater than that of a similar number of omnibuses, for the service would be more frequent. Not much increase of speed can be hoped for in congested areas, but outside these the motor should be able to run half as fast again as the horsed 'bus.

There exists, however, no reason why a still more improved and refined omnibus service should not be started, electricity alone being adopted, instead of steam, petrol, or a combination. Runs of seventy and eighty miles without recharging are perfectly feasible by using standard long-distance batteries, and would suffice for the daily journeys of the omnibus, while the recharging could be effected with little or no trouble after working-hours.

Motor-omnibuses, besides working on the regular routes, can be run on the tramway time-table system on tramway sections where there is little traffic; while for developing scantily-populated districts and accustoming people to travel, automobile public conveyances are perfect agencies, the very fact that they can choose their own route accentuating this great advantage; and on special occasions, for instance when exhibitions are held in places inaccessible by tramways, they will be a source of considerable profit.

Our provincial towns (take Eastbourne and Hastings for example) are beginning to wake up on the subject, and many of them have adopted or contemplated the starting of some form of horseless omnibus, in several cases the motive power being electricity. Across the Atlantic automobile 'buses are run by the Fifth Avenue Stage Company of New York City down Fifth Avenue, and have proved most popular; while in Chicago there are three lines of electric omnibuses successfully competing with the street cars for patronage. They are double-decked, seating forty passengers, and when they are "full-up" express speed is put on, and there are no more stoppages until the down-town district is reached.

As to four-wheeled cabs, they are hopelessly behind the times, though excellent ones may be evolved out of the landaulette type of electromobiles. During sixty-two years of sullen toleration on the part of the public, the growler has improved but little, and it remains a mystery why in the streets of the world's metropolis comfortable and comely private vehicles cannot be hailed for hire, as in other cities.

New and improved cabs, such as the "Brougham," the "Clarence," and the "Chesterfield," from time to time appear in our streets, and inspire hope that a general reformation is about to take place, and that neat little coupe's will be universal. But in some unaccountable manner, after a brief season they disappear from public view as did the lemon-coloured electric broughams of a few years ago relegated to some mysterious region where vehicular failures find employment when banished from Modern Babylon.
 
http://glostransporthistory.visit-gloucestershire.co.uk/GRCW_Electric Taxis.htm
On 15 August 2011 The Earlswood Press published Gloucestershire Transport History reader and London taxi driver Bill Munro's latest book - London Taxis : A Full History - at an RRP of £15.99. Bearing ISBN 978-0-9562308-2-9, the 240 page 200mm x 175mm paperback includes over 150 black and white photographs, some of which have never been published before, and traces the story of the London taxi from 1897. Some of the first of these Horseless Cabs, ordered and operated by Walter C. Bersey, were electric and built by The Gloucester Railway Carriage and Wagon Company Limited.



Born in 1868, Walter Bersey was an electrical engineer whose development of an improved dry battery allowed him to built an electric bus in 1888, although his first passenger cars were not made until 1895.

They resembled motorised horse carriages with bodies built by Arthur Mulliner of Northampton located over twin motors, a 2-speed gearbox with clutch (unusual in an electric), and chain final drive.

Three of these electric vehicles took part in in the London-Brighton Emancipation Run of November 1896, though it was widely rumoured that they completed the journey by train. This was finally confirmed by Walter Bersey in a speech to the Veteran Car Club in 1935.

The first Mulliner bodied Bersey taxis went into service on 19 August 1897 and by the end of 1898 the London Electric Cab Company - based in Juxton Street, Lambeth and with Walter Bersey as General Manager - was running twenty-five, with some reserved for the profitable carriage trade.

With a 40 cell battery powering 3.5 bhp Lundell type motors and built by the Great Horseless Carriage Company, the first Bersey taxis featured quick-change battery boxes and had a range of 30 miles and a top speed of 9 mph. They were the first self-propelled road vehicles available for public hire in London and perhaps in the whole of Great Britain.

The public’s initial reaction appeared to be good, with reports of them being taken from the ranks in preference to horse cabs, to the annoyance of the horse cabmen who had been waiting for some time for a fare. Some cabmen were keen to drive them and their union supported their arrival but other cabmen feared them, thinking that the motors were ‘explosive’.

They were much reported in the press and christened ‘humming birds’, because of the noise of the motors and their bright yellow and black paint but two incidents tarnished their reputation.

The first occurred on 10 September 1897, just three weeks after their introduction. A cabman, George Smith was charged with drunken driving in Bond Street while in charge of a Bersey. He was fined £1.

The next, tragic incident occurred just three weeks later, when a small boy, nine year old Stephen Kempton was cadging a ride by standing on the back springs of a Bersey when his coat was caught in the driving chain and he was crushed. He became the first child in Britain to be killed by a motor vehicle.

The cabs were also not as economical or as reliable as the company hoped. The range was suspect and, if the batteries were to run out of charge, recovering the cabs was a difficult business. The batteries proved too heavy for the vehicle and wore out the tyres, the motors began to vibrate badly and the battery box was insecurely fitted and slid about when the cab was in motion.

The low ground clearance afforded by the battery boxes was similarly considered a hazard. If a pedestrian were to be run over by a Bersey, the argument went, then he might be saved from further harm if the ground clearance was sufficient for the cab to continue over him.

The drivers, who at first were happy to pay the company six shillings (30p) per day to hire the cabs soon left when that rate was put up to twelve shillings and tuppence-farthing, (around 66p) the same as that for a hansom. The public soon tired of their novelty too, and despite there being some keen adherents, hirings became fewer.

The original vehicles were withdrawn in early 1899, and the company temporarily laid off their cabmen. A few weeks later, Bersey himself wrote to ‘The Autocar’, announcing that no less than 50 of a second type, built by the Gloucester Carriage and Wagon Company were scheduled to reappear on 28 May 1899, alongside the original 25.

These had improved batteries and would be painted in new colours. Bersey denied the rumour that they would be fitted with ‘taxameters’, as taximeters were then known, but this would prove to be incorrect, although several of the new vehicles would be ‘specially fitted and reserved for private hire’.

On Wednesday 24 May 1899 the cabs were paraded around the streets of the capital to announce their return to service. However, Bersey was dismayed by unconfirmed reports that several cabs had been involved in accidents in the Fleet Street and Farringdon areas, and wrote to ‘The Autocar’ magazine about these reports. Apart from explaining that one cab encountered problems with a tyre, he denied that any the so-called dangerous events ever happened and announced that he had put the matter into the hands of his solicitors.

The end was signalled when a Bersey ran out of control and crashed outside Hyde Park Gate. Some elements of the press remained actively hostile, and continued to criticise the Berseys, reducing public confidence.

They were removed from service in 1899 and the company ceased to trade, with some of the cabs sold to independent proprietors. Electric cabs in Paris and in New York were also eventually a failure. The London cab trade would have to wait for technology to catch up with ambition and, for four years the horse cabmen had the work to themselves.

No Bersey private carriage is known to survive, but an original batch black and yellow taxi (pictured above) can be seen in the National Motor Museum at Beaulieu. Bersey himself turned to petrol building his own first internal combustion car in 1898 and later selling Delahaye and Darracq cars on behalf of the Automobile Manufacturing Company of Long Acre, London.

...so it's possible the car in that "London 1896" Youtube vid was one of the first "Berseys" produced, before they went into service as taxis.

Seen here:
http://www.lvta.co.uk/history.htm
London’s first motor cabs were electrically powered. They were called Berseys after Walter C. Bersey, the manager of the London Electrical Cab Company who designed them, but were nicknamed ‘Hummingbirds’ from the sound that they made. 25 were introduced in August 1897 and by 1898 a further fifty of them were at work. Unfortunately, they proved costly and unreliable and there were a number of accidents, including one fatality. Public confidence in them evaporated and they were withdrawn by 1900.
 
http://jalopnik.com/5870808/how-a-new-york-taxi-company-killed-the-electric-car-in-1900
How A New York Taxi Company Killed The Electric Car In 1900

By Raphael Orlove
Jan 25, 2012 12:00 PM

New York City is proud of its six upcoming Nissan Leaf cabs, but more than a hundred years ago an all-electric fleet of taxis served the city using technology that even today would still be considered cutting edge.

Here's the story of how their fall from grace killed electric vehicles in the United States — and the world.

In the early 20th century, electric cars were actually mainstream. In 1900, there were more electric automobiles on New York City streets than cars powered by gasoline. True, there were only 4,192 cars sold in the United States that year, but 1,575 of them were electric. The advantages were obvious — electrics were quiet, clean, and easy to use. Battery power looked like the ideal choice for personal urban transportation (For what it's worth, both electrics and gas-engined cars were both beaten in sales by steam-powered cars — 1,681 of them, to be precise — but who the hell really thinks steam still makes sense?).

Street car tycoon, playboy and former Secretary of the Navy William C. Whitney saw a business opportunity in using electric vehicles as taxis, and bought up a short-on-cash New York City electric cab company run by two engineers, Morris & Salom. With $200 million in assets, Whitney renamed the company the Electric Vehicle Company and dreamt of a taxi cab monopoly in every major American city. He hoped that New York would be his first success.

Whitney thought he had found a solution to the key obstacle of battery-powered electric cars, limited range. Instead of stopping every few hours to charge an electric car's massive lead-acid batteries, cars would swap out empty batteries for charged ones, not unlike Shai Agassi's Project Better Place battery-swap concept.

At the end of every shift, the taxi driver would return to the central battery storage facility on Broadway and switch his spent battery for a rested, recharged one, much like a horse-drawn taxi driver would return to a central stable. The company could keep the cabs running around the clock since they only had to only to rest the batteries and not the automobiles themselves.

Whitney made one big mistake: His grandiose dreams of expansion.

As Michael Schiffer supposes in his 1994 investigation of the legacy of American electrics, Taking Charge, Whitney built up the company's fleet from just 13 cabs to 200 and then ordered 1,600 more. The more vehicles Whitney built, the smaller his overstock of batteries became. In the quickly crowded spaces of the battery storage facility, maintenance grew slack and batteries began to fail. Within a few years, the Electric Vehicle Company operated with a fleet of malfunctioning taxis and it was all the company could do to just keep the existing cabs in service.

NYC_Taxi_1900a.jpg

How The Electric Vehicle Company Became A Patent Troll
In 1895, George Selden, a Rochester, New York patent lawyer and inventor, despite never having gone into production with a working model of an automobile, had a credible claim to having patented the automobile. In 1899 Selden sold his patent rights to William C. Whitney and the Electric Vehicle Company for a royalty of $15 per car with a minimum annual payment of $5,000.

As the regional companies began to shut down, Whitney and Selden together focused their efforts toward collecting royalties of 0.75% on all cars sold by other manufacturers.

In 1903, Henry Ford, along with four other automakers, went to court contesting the patent claim by the Electric Vehicle Company. Eight years later, the case ended with a victory for Selden. Ford however, appealed the decision, and won his case with the argument that his cars were based on Otto Cycle engines — and not Selden's patent.

But by that time it mattered little to Whitney. EVC had gone bankrupt four years earlier.

The Electric Vehicle Company didn't have the money to update the cabs themselves and by the mid 1900s, were several years out-of-date. No longer able to justify the labor and costs of electric operations, the company liquidated its assets, took on new management from one of its subsidiaries, the Columbia Motor Carriage Company, and renewed its fleet with gasoline-powered cabs.

In December, 1889, the Electric Vehicle Company operated 2,000 taxis, trucks, and busses and its factory in Hartford, Connecticut was the largest electric vehicle assembly in the world. By 1901 his regional companies were shut down and in 1907 the Electric Vehicle Company was completely out of business.

The Electric Vehicle Company's experiment with battery-exchanging taxis was seen as a failure not of a company, but of a system. With the ambitious promises of William Whitney fresh in the public mind, the Electric Vehicle Company's bankruptcy deeply tarnished the reputation of electric cars. Electric taxi companies all over the world went out of business, unable to foot the maintenance bills for fleets of ever-rarer electric automobiles.

This discouragement of innovation is the real legacy of the Electric Vehicle Company. It is easy to see electric vehicles as technologically inferior to gasoline-powered cars, having limited range and added cost. Had there more investment in batteries and charging infrastructure, electric vehicles may have stayed relevant in the car market. Rather than almost completely disappearing from the market in the 1920s, electric cars may have even remained the go-to choice for a quiet, easy-to-use automobile very much in the mold of today's best selling family and luxury vehicles.

The bankruptcy of the Electric Vehicle Company was the end of New York City's great electric hope. A century later we are still feeling the effects of this momentous failure.

NYC_Taxi_1900.jpg
Photo Credit: JalopyJournal, twin6
--------------------------------------------------------------------------------
Bibliography

Ambasz, Emilio ed. The Taxi Project: Realistic Solutions for Today. New York, NY; The Museum of Modern Art, 1976.

Kirk, Robert S. and Barber, Kenneth F. A Pictoral Characterization of Worldwide Electric and Hybrid Vehicles. Washington D.C.; Energy Research and Development Administration, 1977.

Sherman, Joe. Charging Ahead. New York; Oxford University Press, 1998.

Wakefield, Ernest Henry. The Consumer's Electric Car. Ann Arbor, MI; Ann Arbor Science Publishers, Inc., 1977.

Wakefield, Ernest Henry. History of the Electric Automobile. Warrendale, PA; Society of Automotive Engineers, 1994.

Westbrook, Michael H. The Electric and Hybrid Electric Car. Warrendale, PA; Society of Automotive Engineers, 2001.

Schiffer, Michael. Taking Charge: the electric automobile in America. Wasington D.c.; Smithsonian Institution Press, 1994.

Sperling, Daniel. Future Drive. Washington, D.C.; Island Press, 1995.

Stein, Ralph. The American Automobile. New York, New York; The Ridge Press.

The Car of 1911. Bridgeport, CN; The Locomobile Company of America, 1910.

The Detroit Electric 1911. Detroit, MI; Anderson Electric Car Co., 1910.

Maxim, Hiram Percy. Horseless Carriage Days. New York, NY; Harper & Brothers Publishers, 1937.


Something this article failed to mention...
From the book "Taxi! A Social History of the New York City Cabdriver," by Graham Russell Gao Hodges:
A fire settled the issue. In January 1907, the Electric Carriage and Wagon Company went under when three hundred of its cabs burned in a garage fire.
 
http://wiki.transport-museum.com/(S...Perks and Birch&AspxAutoDetectCookieSupport=1
Perks and Birch
Perks_and_Birch_1899.jpg
Perks, Birch and Duret demonstrate the 'motor-wheel'.

Perks and Birch were pioneering motor engineers once located in Coventry.

In 1899, Edwin Perks and Frank Birch grabbed the attention of the motoring world with a concept design called the ‘Motor Wheel’. This took the form of an aluminum-alloy wheel which held a single-cylinder engine unit and fuel tank, and was designed to replace the front or rear wheel of a pedal-cycle, or tricycle.

Built at small works near the Foleshill Road, the motor-wheel was tested on a cycle and tricycle on the surrounding streets. The manufacturing rights were then bought by the Singer Cycle Company.

Staffordshire born Perks moved to Coventry in the 1880s, and like so many others found work in the thriving cycle industry. During the 1890s while working for the Beeston Motor Company, he became more involved with the development of motorised transport which ultimately brought him and Coventry born Birch together.

It’s not known exactly how many years that Perks & Birch worked for Singer, but Birch later opened up a cycle shop at Spon Street, and by 1933, established a motor garage at Conduit Yard.

Pics of the 1901 Singer machines:
Singer_1901b.jpg

Singer_1901a.jpg

Singer_1901d.gif
 
http://www.ecomagination.com/the-dawn-of-the-electric-highway?utm_campaign=outbrain
highway_01.jpg

The Dawn of the Electric Highway

Michael d'Estries
Tue Sep 13 2011

To better understand the present, sometimes one must turn to the past. For those interested in the evolution of the electric car industry, it’s useful to turn the dial back over one hundred years to the dawn of the automobile.

In 1900, there were 20 million horses and only 4,000 cars in the United States. Urban planners were desperately attempting to deal with the dire issue of “horse pollution”;
http://www.uctc.net/access/30/Access 30 - 02 - Horse Power.pdf
mainly defined by worsening manure and urine on city streets. If you wanted to fill up, you drove to your local general store or kerosene refinery with a bucket. The world’s first gas station in St. Louis, Missouri would not be built for another five years.

Demand for filling stations took off after Henry Ford revolutionized the motor industry and made the automobile financially accessible to the middle class. Increased ownership spurred the need for greater infrastructure and easier access to fuel. The stigma of the car as a leashed local commodity was lifted. The time of the horse gave way to the era of horsepower.

The United Kingdom took the first big step with what’s being claimed as the “world’s first national charging network.”

Not just a bunch of gas

Today in 2011, the world is yet again poised to repeat history with the introduction of affordable, efficient, and clean-running electric vehicles. Of the 260 million registered autos in the United States, only a fraction of them are all-electric. In the United Kingdom, an estimated 2,000 pure electrics
http://www.ecotricity.co.uk/for-the-road/news/ecotricity-launches-the-electric-highway
share the road with over 30 million conventional vehicles.

Like the early 20th Century, distance travelled is largely limited to the availability of charging stations—with most owners choosing to power up at home. Ventures beyond the rated 75 to 100 mileage of most EVs can often lead to what’s casually described as “range anxiety.”

In an effort to curb motorists’ fears and encourage adoption of electric vehicles, municipalities, federal governments, and private sector businesses are all moving forward with the installation of charging stations—the majority of which are located in urban centers, a nod to the heavy commuter population.

“Until now, charging posts have all been in city centers like London, but this is where you need them the least.”

Those wishing to travel beyond cities have effectively found their new vehicles limited by a public highway system devoid of charging infrastructure. Proponents of electric vehicles are eager to change that; a move they say could open the doors to mass adoption by alleviating range anxiety fears.

The British are coming

The United Kingdom took that first big step this summer with what’s being claimed as the “world’s first national charging network.” Spearheaded by Ecotricity,
http://www.ecotricity.co.uk/
a private green energy firm, EV motorists will soon be able to travel from London to Edinburgh (400 miles) by tapping into 27 “Welcome Break” motorway stations with charging points.

“Until now, charging posts have all been in city centers like London, but this is where you need them the least,” said Ecotricity founder Dale Vince.

“Statistics show that it’s not in towns and cities where electric cars need to recharge, but on longer journeys between cities—and that means motorways.”

While the network is free to use and powered by renewable wind and solar, it does come at the expense of one precious resource: time.

Ecotricity’s stations feature fast-charging tech (32 amp, 3 phase AC supply) that can charge a vehicle within two hours or deliver an 80 percent “top-up” in 20 minutes. Unfortunately, the majority of pure EVs on the road today are not compatible. Instead, motorists are looking at a yawning six to eight hour wait between charges on the standard 16 amp 230V option. That turns an otherwise mundane seven-hour drive from London to Edinburgh into a 32-hour expedition.

Of course, installing these chargers is an added benefit to communities looking to tap into motorists with some extra time on their hands. Restaurants, local attractions, and even hotels will likely see increases in revenue while people stretch between charges. In the eyes of some, the classic road trip may once again be about the journey rather than the destination.

EverGREEN solutions

In the U.S., Washington State is planning to offer the first interstate charging network, stretching 580 miles from Oregon to Canada. The units, installed and managed by the California-based AeroVironment,
http://www.avinc.com/
will be strategically spaced 40 to 60 miles along the I-5 corridor to cover a majority of EV ranges. Similar to the UK model, these stations will offer a rapid-charge of 30 minutes for compatible vehicles and a standard option taking four to six hours.

Next generation fast-chargers are said to power batteries to 50 percent capacity in as little as three minutes.

But are these developments enough of a tipping point? Chelsea Sexton, a well-known advocate for electric vehicles and founder of The Lightning Rod Foundation,
http://lightningrodfoundation.org/
says they’re encouraging, but not perfect.

“The enthusiasm behind these infrastructure plans is fantastic, and a sprinkling of public charging is useful to support EV deployment,” she said. “I do wish those in the space would heed the lessons we’ve learned over the last 15 years—there’s too much infrastructure going into some areas, not enough in others or not in the right places. And most of the monetization schemes proposed can at best be described as wishful thinking, and will result more likely in the waste of large amounts of taxpayer funding and a well-deserved public and media backlash as chargers go unused.”

As with any new technology, this is just the beginning. Next generation fast-chargers are said to power batteries to 50 percent capacity in as little as three minutes—with full charges capable in 10 to 13 minutes.
http://electric-vehicles-cars-bikes.blogspot.com/2010/05/japanese-firm-can-recharge-evs.html
Companies are also working on automated “battery swap” stations that would get motorists back on the road in under one minute; considerably faster than today’s conventional gas stations.
http://www.technologyreview.com/energy/37982/

By 2015, the number of charging points in the U.S. is expected to jump from the current 2,900
http://www.afdc.energy.gov/afdc/fuels/stations_counts.html
to over one million. Such a ubiquitous infrastructure coupled with future battery advancements will likely be the catalyst needed for the electric car industry to cut the range anxiety leash and hit the open road. As the saying goes, it’s all just a little bit of history repeating itself.

Illustration by Hey Studio
http://www.heystudio.es/

Michael has been involved in the online green industry since 2005 with a focus on technology and social issues. He's the co-founder of Ecorazzi.com, which spotlights philanthropy in the entertainment industry, as well as a featured blogger for the Mother Nature Network.
 
Shorpy found this great pic of Broadway in New York City in 1905... Full pic with buildings and skyline etc here:
http://www.shorpy.com/node/8366

...but looking closer at the street traffic:
Broadway_1905sml.jpg

One guy on a bike, but otherwise the horseless vehicles are ALL electric. The first horseless Broadway streetcars were cable cars but by 1901 they had been converted to electrics by putting conductors into the conduits between the rails that had originally held the cables (NYC had a law prohibiting overhead wires for trolley cars.)

And there's one of the battery electric taxis plus one of these monsters:
Vehicle_Equipment_Company_c1904.jpg

...also found on Shorpy, here:
http://www.shorpy.com/node/8314

One of the comments on Shorpy has this:
Vehicle Equipment Company

Submitted by Tobacconist on Thu, 07/21/2011 - 8:42pm.

These “Automobile buses” were made by the Vehicle Equipment Company of Long Island City, New York. Their literature called them “A combination of the commercial and pleasure types.”

The Vehicle Equipment Company was started in Brooklyn in 1901 by Robert Lloyd and Lucius T. Gibbs. By 1903 they had relocated to Long Island City. Up until mid-1906 they built a large number of commercial electric vehicles. From 1903 to 1905 they also built a 3-seat electric car called the VE Electric. Almost all of their vehicles were single motor shaft-drive. The company went into receivership in 1906, and the General Vehicle Company (owned by the General Electric Company) purchased the factory and reorganized to build both gasoline and electric vehicles, as well as replacement parts. Vehicles built from mid-1906 on were known as GV Electrics.

By 1915 there were some 2,000 GV Electrics in New York City alone, representing more than 25% of all trucks of all types working daily in the city. The style of “Automobile bus” seen above was also very popular in Washington D.C. and other cities as well.

General Vehicle Company ceased production around 1917.
 
Western Electrician
July 20, 1889
New York Notes.

New York, July 13

It is reported that a novel invention in the shape of an electrical carriage is now being used at Saratoga by the inventor, Mrs. Angie Truax, who resides at the well-known Frank Leslie place, "Wintergarden." She is known to the stage as Madam Schott. It was from a love of travel that she conceived the idea of her invention, which resembles a two-seated side bar surrey wagon, with top, and of about the same length and truck. The wheels are like those of a bicycle, but heavier. The steering apparatus is placed in front, and connects with the front axle by a gearing segment. The propelling power is connected with and turns the rear axle by a system of gears. The electric motor is placed in the center and on the bottom of the carriage, and takes up but little room. It has a "vibrating" armature instead of a rotary; and this is where the little woman inventor looks for the greatest results in her electric motor, claiming that more power can be obtained than from any other form of rotary motor, and that the horse power can be increased without the necessity of constructing a larger motor by simply using more battery. A constant current can be kept up for three hours, and this, too, at a test speed of fifteen miles an hour. A dry primary battery is to be used. Underneath the carriage are air-tight metal tubes, cigar shaped, of suitable size to buoy up the carriage and its load while crossing deep streams, and to the spokes of the hind weeels are ingeniously secured little brass paddles to propel the carriage through the water, and so nicely arranged that they are in no way liable to injury, nor do they interfere with road travel. The carriage has many novel features, such as electric lights, tent, electric stove for cooking and heating, and is altogether a wonderful affair. A speed of fifteen miles an hour is now easily obtained, and the fair inventor is confident of being able to increase to thirty. Mrs. Truax thinks she can apply all these principles to aerial navigation, and she expects to skim the air yet on electric wings.

Sadly, no word whether Angie EVer got her electric wings project off the ground...

:lol:
 
The Electrical World
July 20, 1889
The Riker Motor
The_Electrical_World_1889July20Fig1&2.jpg
The accompanying illustration, Fig. 1, shows the type of motor now being constructed by the Riker Electric Motor Company, of Brooklyn, N.Y. These motors are built in various sizes from 1/6 h.p., suitable for driving fans and light machinery, up to 2 h.p. One of the uses to which the motor of 1/8 h.p. can be applied is to the pumping of water, the arrangement for which is shown in the engraving, Fig.2. The motor is capable of elevating 150 gallons per hour to a height of 50 feet; it is automatic in its action, being operated by the float in the tank as the water in the latter falls and rises. Similar apparatus is also arranged with motors of 10 h.p., also built by the company, and designed for other work.

Just fun to see this early work from Riker. His Riker Electric Motor Company was only a year old in 1889, and he was only 21 years old...

From the same journal one week later:
The Electrical World
July 27, 1889
PATENTS ISSUED JULY 9, 1889.
400,771. Secondary Battery Electrode; Andrew L. Riker, of New York. N. Y. Application filed April 24, 1889. A secondary battery element consisting of a doubled or folded plate provided with tapering holes filled with active material, the smaller ends of said holes being outside, and a sheet of absorbent tnaterial interposed between said holes.

In short succession:
The Electrical World
August 10, 1889
PATENTS ISSUED JULY 28, 1889.
407,689. Charging Systems for Secondary Batteries; Andrew L.Riker, of New York, N.Y. A car or other vehicle having compartments all open at the side for the admission of batteries and transverse rails near the top of each compartment, in combination with a series of battery vessels having rollers adapted to run on said rails.

He made his first electric "car" in 1894 from a pair of Remington bicycles:
Riker_1896a.jpg

A trike a couple of years later...
Riker_electric-trike_1896.png

Nice page from a "This Day in History" site:
http://www.history.com/this-day-in-...sets-the-world-speed-record-for-electric-cars
Nov 16, 1901:
Riker Torpedo Racer sets the world speed record for electric cars


On November 16, 1901, a spare, low-slung car called the "Torpedo Racer"—basically a square platform on bicycle wheels—breaks the world speed record for electric cars in Coney Island, New York. The car's builder and pilot, an engineer named Andrew Riker, managed to coax his machine one mile down the straight dirt track in just 63 seconds (that's about 57 mph; today, by contrast, the world speed record for an electric vehicle is about 245 mph). The battery-powered Torpedo Racer held onto its record for ten years.

Riker's Torpedo Racer was the fastest, but not the first, working electric car in the U.S. The first one was built in 1891 by an Iowan named William Morrison. It had a 4-horsepower motor, a 24-cell battery that weighed almost 800 pounds (the whole car weighed about twice that), and could go about 14 miles per hour at top speed. The Morrison car was an amazing innovation, but not many people were ready to buy one. A few years later, however, the Pope Manufacturing Company of Connecticut sold quite a few of its Columbia Electric Phaetons, which were heavier than Morrison's machines but could still travel at a whopping 15 miles per hour.

Unlike Morrison and the engineers at the Pope Company, Riker concentrated on building electric racecars. In September 1896, one of his machines won the country's first-ever automobile race, five laps around a one-mile dirt horse-racing track in Cranston, Rhode Island. (The Riker electric finished the race in a little more than 15 minutes.) Riker cars could maintain reasonably fast speeds over long distances, too: In April 1900, a relative of the Torpedo Racer won a 50-mile cross-country race on Long Island. It was the only battery-powered car in the field of racers.

Likewise, Riker's was the only electric car in the 1901 Long-Island-Automobile-Club-sponsored race at Coney Island. Against eight gas-powered cars and six steam-powered ones, all stripped down to frames and wheels to eliminate unnecessary weight (Riker's navigator didn't even have a seat; he just sat on the back of the car, clinging to its side as it whisked down the track), the Torpedo Racer finished the race in third place.



Riker was a Co-Founder of the US Society of Automotive Engineers in 1905 and served as the first president for three years...
 
Some 21st century ebikers may find these opening remarks amusing...

As reported in The Electrical World, August 17, 1889
Tenth Convention - Semi-Annual Meeting of the National Electric Light Association.

The tenth convention of the National Electric Light Association was held at the Casino, Niagara Falls, N.Y., Aug. 6,7 and 8, 1889.

The convention was called to order Tuesday, Aug. 6, 1889, at 10:30 A.M., by President Weeks, who addressed the convention as follows.

Gentlemen: We are met primarily to further the interests of local companies; secondarily, to aid in the general development of the business and to promote the good of manufacturers of electrical apparatus and supplies. Our association combines both the commercial and scientific elements, and its deliberations are of a theoretical, as well as a practical nature. Our chief work lies in calling attention to the needs of the business and to available improvements. In this convention are represented industries which embody the very forefront of progress, yet many of you come from lands where electric-light and power interests have no legal status, or are struggling under adverse enactments. I trust that the work of the committee on State and Municipal Legislation will be so seconded that we shall soon be accorded just legal recognition.

While the arc light business is steadily increasing, the greatest development has been, and must continue to be, in other directions. The superiority of the incandescent light as a supplement to the arc, is now more generally acknowledged; but owing to the commercial value of the residual products in the manufacture of gas, the incandescent light cannot compete with it in the matter of price. Without a perfect subway system and storage battery, it cannot be so reliable.

The Committee on Underground Conduits and Conductors will report progress and ask for more time. It should not be inferred from the absence of this topic from our programme that its importance has been overlooked, or that nothing is being done in the direction of electrical subways. Hundreds of thousands of dollars are being expended in experimental work; but many years must elapse before a complete solution can be reached.

The outlook for the alternating current is encouraging. More exact work is being done in this direction; and the invention of meters and motors for this current has added greatly to its commercial value. The meters recently brought out should be of the greatest advantage. It is a fundamental principle that every business of any stability measures its commodity; and customers are more confident of their service when they know that it is being measured.

We may feel gratified that our electrical apparatus is in demand in foreign countries, but this should not blind us to the fact that the criticisms of European engineers upon our streets and station construction are just. It is a hopeful sign, however, that both local and parent companies are paying more attention to good apparatus and the proper construction of lines and planning of stations. This becomes more necessary as business increases, and the price of coal advances, rendering a reduction in fuel all important. The increase in boiler pressure, and the compounding of engines, are steps in this direction. Schools, colleges and larger electrical companies, are paying more attention to electrical education. Popular articles on the applications of electricity are informing the general public as to the extent and value of our industry. With greater efficiency in apparatus, better trained men and more intelligent management, depreciation will be reduced, the conservatism of investors toward electrical securities will disappear, and capital will seek us.

Probably no other topic upon our programme will attract more general attention than the "Unconstitutionality of Electrical Execution." Whatever may be the opinion of scientists in regard to this mode of taking life, the whole movement is encouraging, in that it evinces the world's progress in sensibility.

One of the most important questions that will engage your attention at this session will be the report of the Committee on Harmonizing the Electrical and Insurance Interests. It is a matter of deep concern, not only to the producer, but to the consumer of electricity, that the electrical and insurance companies co-operate. To harmonize these interests will be to give one of the strongest impulses to electrical industries.

Electric welding is winning its way to a commercial basis, and is destined to occupy an important place in mechanics. But by far the greatest activity at present is in the direction of the transmission of power. The electric motor is working a complete revolution. It is impossible to forecast its future. The field of the stationary motor is practically infinite, and is almost virgin soil, while the mileage of roads now operated by electricity, though rapidly increasing, is still so small, compared with the total railroad mileage, to barely suggest immense possibilities.

Statistics collected by our secretary show that the number of arc lamps in service in the United States alone during the last six months has increased from 219,924 to 237,017; that of the incandescent lamps from 2,504,490 to 2,701,768; the number of street railroads operated by electricity is now 109, comprising 575 miles of track and 936 motor cars. The capital now invested in these industries amounts to $275,000,000. These facts bring most forcibly to our attention the financial importance of the interests which we are here to represent, and should impress deeply upon the mind of each member his individual responsibility and the necessity for doing his utmost, both by regular attendance and close attention to the work in hand, to accomplish the objects for which we are assembled.

At the conclusion of his address, the President introduced Hon. W.C.Ely, of Niagara Falls, who delivered the address of welcome, of which the following is an abstract:

You are experimenters with power and force, you deal in it, you generate it, utilize it and profit by it. The item of profit is a stimulus to your brains and energy. You are the devotees of a force, the latest, the most interesting, to which all thoughtful men are now looking for the solution of some of the most difficult economic questions of the hour. To you then will appeal, in all its grandeur, this mighty waterfall, the grandest manifestation of physical power upon the face of the globe. As such it is most interesting, most wonderful.

But it is not merely as a natural wonder, not merely as a thing of grandeur and beauty, that you will look upon Niagara. For years the minds of power producers have been turned with longing toward the mighty cataract, and with the rapid advancement lately made in the development of electrical power there seems to have been a corresponding increase of interest in the capacity of the Falls, and from all over this country and all parts of Europe have come within tho past three and a half years the suggestions, plans and schemes of all classes of men for the utilization of the power of the Niagara River.

A plan has been formulated which solves the problem successfully. A rapid sketch of it would be understood quite thoroughly if the listener has in mind the topographical features of the river immediately below the Falls, and above them for a mile or two. But let me assist you in grasping the situation: To the eastward of the village for several miles the land is nearly level with the waters of the river, which there move slowly in a broad body; then the rapids succeed, and then the plunge at the Falls 160 feet, and below the chasm 200 feet deep. From the water-level in the chasm below the Falls it is proposed to excavate a tunnel 24 feet in diameter, extending under the village eastwardly at an ascending grade of 1 foot in 100 feet, which tunnel will approach within 400 feet of the river, just cast of the present hydraulic canal and at that point will be 125 feet below the surface of the land and the waters of the upper river; thence it will extend eastwardly with a slightly modified grade and parallel with the river, about 1 1/3 miles, and at its easterly termination will still be 90 feet below the surface, and in diameter 10 feet, the same having been gradually narrowed to that limit in the last 1 1/2 miles of its length. This tunnel will serve as a tail race, simply to discharge water. Immediately over and above this tunnel will be constructed lateral tunnels, at right angles with the river and the main tunnel, and arranged to discharge into the latter. Over and above the lateral tunnels, and like them, at right angles with the river and the main tunnel and upon the surface of the land will be excavated surface canals, into which will be diverted the waters of the river. By the side of these canals, wheel-pits can then be excavated and into them turbine wheels placed at a depth of 100 feet below the surface of the land, and arranged to discharge directly into the lateral tunnels below, and thence through the main tunnel or tail-race and into the gorge of the river below the Falls. This system of transverse canals and tunnels would discharge 864,000 cubic feet of water per minute, and furnish 119,000 h.p., and this power is not situated in the midst of inaccessible mountain ranges, but midway between New York and Chicago, on the great trunk lines of railroads, with unsurpassed shipping facilities. The advantages of the situation are apparent at a glance. As enumerated by Thomas Evershed, the originator of the tunnel idea, and summarized by a very high engineering authority in his indorsement of Mr. Evershed's plans, they are: An exhaustless supply of pure water at a practically constant head; solid and durable rock containing all the tunnels, shafts and conduits, and furnishing solid and imperishable foundations for all the structures; and a practically uniform surface, of the proper elevation of the lands necessary for manufacturing structures.

At Niagara Falls then is nature's great store-house of power for the development of electricity and the successful answer to the question, What can be done in the transmission of power by electricity to a distance? Sir William Thomson said that "Niagara Falls possessed more power than all the coal mines in the world." And a true appreciation of the idea impelled Edison to say that "Niagara is the greatest storage battery in the world." This latter is absolutely truthful, and with the power of the waterfall developed by means of the hydraulic tunnel, a system of powerful dynamos to transform the water-power into electricity, and this transmitted to Buffalo, that city might be supplied with light and power far more cheaply than at present, and the demonstration of the capabilities of electrical power and transmission afforded that would give us something more sure than the world has yet had. The accomplishment of this work would solve the problem of rapid transit in the city of Buffalo.

Just north of Niagara Falls, in 2012 we still refer to our electricity as "hydro" (EVen though these daze it's about 1/2 nuclear most of the time:)
cns_e_chart.png


...and Adam Beck still stands in our pantheon of electric Gods:
http://en.wikipedia.org/wiki/Adam_Beck
Adam_Beck.jpg
 
Nice paper presented by Wm. Bracken on the economics of battery-electric cars (street cars)...

From The Electrical World, August 17, 1889

The tenth convention of the National Electric Light Association, Casino, Niagara Falls, N.Y., Aug. 6,7 and 8, 1889.

A paper by Mr. Wm. Bracken

Electric Traction By Storage Batteries.

I have been invited to address you on the subject of electric traction by storage batteries.

It has been customary for speakers on storage batteries to begin their discourse by apologizing for their subject. That day has gone by. The storage battery has no longer any apologies to make.

My purpose at first was to give a detailed account of the progress of storage battery traction, by going back to 1881, when the first storage battery car was run, and following up the history of improvements from that time to the present. But I have found it impossible to get full and reliable data as to the work accomplished in Paris, in England, or in this country. I wrote to almost all the companies and individuals who have been engaged, or are now engaged, in storage battery traction to send me full accounts of their experiments and work; but I regret to say that only one responded to my request, and that was Mr. A. H. Bauer, who gave me a very interesting account of his experiments with his storage battery car in Baltimore, in 1885-86. The published accounts of the operation and experiments of storage battery cars in Europe are so obviously inaccurate as to be unworthy of reproduction. There is one exception, however, to this, and that is, the account given by the jury of commissioners at the Antwerp Exhibition of 1885 on the work of the storage battery car exhibited there; but as you are all more or less familiar with that report, I will make no further reference to it. I am, therefore, compelled to confine my remarks to my own observation of storage battery traction. I will not weary you with threadbare information. I once heard a judge tell a loquacious lawyer that he must assume the court knew some law. I will assume that you have a pretty general acquaintance with the storage battery in lighting and in traction; but there may be some features, chiefly commercial, that have not come under your observation. My observations cover a period of over three years, during which time the company with which I am associated has directed its talents and energy to the development of storage battery traction. You all, no doubt, appreciate the difficulty of the task - not alone difficulties inherent in the system itself, but difficulties arising from the skepticism and lack of sympathy, I regret to say, of a very large majority of the electric community. We all know how much skepticism on the party of street railway men has had to be overcome in electric traction of every kind. It has taken a great deal of hard work - of missionary work - on the part of electrical engineers and inventors to bring about present results. But this is not to be wondered at; for there is nothing harder to accomplish than to supersede an old and well-established system. The horse car had plodded along and gathered strength and influence just as it had gathered fares. That influence was wide spread, and almost all-pervading; for there is hardly a town on this great continent that has not its horse car line. The horse car system had been spreading for about fifty years, and when it came to be in full and undisputed possession of the field, can it be wondered that those men who had the hardihood to attempt to supersede it should be regarded with more or less suspicion - should be looked upon as pretenders - especially when you consider that the method which they propose to employ was electricity? - that dark and mysterious science, as many people, even now, regard it.

Now, the first experiments made with electric cars were calculated to increase this suspicion, and to throw disfavor on electric traction; for it is a characteristic of investors to be so far carried away by their enthusiasm as to commit great indiscretions in carrying on experiments in public which really should be conducted in private. It was on this account that the early experiments of Daft, in 1883, and of other well-known electrical engineers in succeeding years, while they created wonder, did not beget confidence. I may say, without any invidiousness, that two years ago there was not a single electric car run in this country that proved anything more than possibilities.

There were probably two dozen cars being run at that time by the overhead wire system, but so unsatisfactorily that people who went to see them came away shaking their heads with distrust. Now all this distrust has disappeared, and electric traction has grown so fast that to day there are no less than one hundred street car lines in this country that are either running their cars by electricity, or are in the course of introducing the system. Electric traction has beyond all doubt come to stay; as the French say, it has arrived. But the large cities are threatened with the cable. The storage battery proposes to challenge its supremacy.

There is a very general popular misconception of the nature of the storage battery. I suppose that at least 90 per cent. of the public have an idea that storage batteries are nothing but buckets, full of electricity. We read in the newspapers, from time to time, of storage battery cars carrying "tin tanks" tilled with electricity. There can be no greater misconception of the nature of the storage battery. The clearest idea I can give you of the energy contained in a storage battery is to compare it with a lump of coal. The source of energy in a battery is identical with that contained in coal. It is merely energy locked up in a number of substances, principally the metals, which, when set free in a certain manner, manifests itself in a certain phenomon we call an electric current. The metal almost universally used in the storage battery is lead in its various forms. In this lead is contained latent energy, the same as in coal, and if we compare the amount of work accomplished by the energy from either source in foot pounds, we will find it to be exactly equal in both cases. Now the general principles involved in a storage battery are very simple. When we charge a battery from a dynamo or other external source of electricity, we are manufacturing lead, and when we discharge a battery through an electric motor or series of lamps we are simply burning lead. But there is this difference between the action of coal and lead, that whereas coal apparently disappears when burnt the lead does not, but is converted into sulphate of lead to be converted back to metallic lead again by a reversal of the current, so that the storage battery is alternately burning and reducing lead to and from one of its salts. This is why the storage battery lasts and does not disappear in the extraction of the energy, as coal apparently does. In fact, the storage battery is an ideal illustration of the conservation of force and the indestructibility of matter.

When the storage battery first became known in a practical ana commercial form by the experiments of Plants in 1859, scientists foresaw for it a great future, and when corporations were formed later on to exploit and introduce the storage battery, the people of Europe, influenced by what might have been considered the extravagant praises of Sir Wm. Thomson and other well known scientists, put an enormous amount of capital into storage battery enterprises. Almost all of those enterprises, however, proved to be commercial failures; first, because the exploiters were ahead of their time; and, secondly, because the public were led to expect more than the storage battery in its then crude form would do.

There probably have been few things more difficult to accomplish than to bring the storage battery to its present stage of commercial value. Notwithstanding all that had been written about its nature and characteristics, its treatment, both in its manufacture and use, has, until very recently, been purely empirical. That stage, fortunately, has been passed; so that, with intelligent care, the storage battery to-day is not only a valuable adjunct in lighting, but is becoming a very prominent factor in traction.

The advantages of storage battery traction, assuming that it is practical and economical, are too obvious for me to occupy your time in recounting.

The obstacles in the way of the success Of the system are largely, if not wholly, overcome. The chief of these was the handling of the batteries. That was the most difficult and the last obstacle to be overcome. Two improvements removed these difficulties. First, the flexible connector, by which it is possible to couple up or remove cells with great rapidity; and secondly, the battery rack, occupying a floor space of 24 x 7 feet on each side of the car, wherein can be stored a sufficient number of batteries to run from 10 to 20 cars, according to its location. This rack represents stall room for 150 horses, or say 6,000 square feet. I regard this rack as the greatest improvement hitherto made in storage battery traction. By its aid we remove the batteries from a car, and replace them by another set in from two to three minutes. Indeed, our cars on Madison avenue, New York, have to leave the station on six minutes headway. In the afternoon trips there is but six minutes interval between their arrival and departure; and they all receive their batteries from the same rack. When the car enters this rack, its panels are dropped down on either side and thus form bridges over which the batteries are withdrawn from, and replaced in, the car. While this change is being made, a competent person inspects the regulators of the car. The motors, gearing, and connections are only inspected once a day, and that at the end of the day's work. You will thus perceive that the great bug-bear of how to store the batteries is no longer an element in storage battery traction.

From my observation of the recent work on Fourth and Madison avenues, now that a number of cars are running, and under very unfavorable conditions as to station room and the like, I am led to believe that the storage battery car is as free if not freer, from accident, as cars that are run by the overhead system. The motors are, I think, subjected to less trying conditions, owing to the fact that, the E M. F. is always uniform. The batteries never give out on the trip. It is impossible for them to do so, as they leave the station with thirty-five electrical horse-power hours stored in them, and do not consume quite twelve in the round trip of 12 miles. The battery in service has never been short-circuited. When the current required exceeds 150 amperes, the battery is automatically cut out. When rigid connectors were used, breaking was frequent, and the flexible connector has, until recently, given some trouble from time to time by jumping out of position while the car is in service; but with recent improvements, disconnection of the batteries while the car is in service is now rendered almost impossible. For several months past the regulators have caused absolutely no trouble. In any event there are two on the car, so that if one should fail the car may be operated from the other end. You will thus perceive that the likelihood of accidents or breakdown is reduced to a minimum. The first standard car has run in three months over 6,000 miles and carried over 80,000 passengers, never having missed but one-half a trip in that time, and that arose from a bent axle. It has never had an accident or stoppage of any kind while in service. Do not be skeptical at the assertion when I tell you that not a dollar has been spent on that car in the way of repairs or alterations.

At this stage you will naturally ask, How about the life of the battery? I answer that, from our observation, there is nothing to fear on that score. A life of six months from the positive plates is sufficient; it is found that they will last very much longer than that. The chief reasons why the short-livedness of a storage battery has been so much talked about and feared, is that it has, until recently, cost so much to manufacture the battery. Now, the material for your battery you have to buy, in a great measure, but once, for the reason that the discarded battery can be made over new. The raw material in two sets of battery, capable of running a car 120 miles a day, costs, exclusive of the containing jars, about $300. Have you machinery and devices requisite for manufacturing this raw material cheaply into a battery? If you have, you need have nothing to fear on the score of economy. It will cost $4,000 to purchase enough horses to run a 16 foot car 120 miles a day; it will cost about $1,500 to purchase enough battery to do that work. The batteries can be maintained for about one-half what it costs to maintain the horses; and by maintaining. I mean replacements as well as feed. This I know for a fact. Can we then have any further doubt as to the relative economy of storage battery traction?

The cars on the Madison and Fourth avenue line take one electrical horse-power hour per mile. The road has some long gradients. The grade at Centre street is over 4 1/2 per cent., and 600 feet in length.

The cost of motive power for a car-day of 75 miles we estimate at $3.40, as against $7.50 for horses. Five dollars for 75 miles ought to cover the cost in winter. By motive power we mean the cost of energy at two cents per horse-power hour, and $700 per annum for maintenance of batteries and motors. To those who may think that two cents per horse-power hour is a low estimate, it maybe said that power has been offered in New York, to be delivered at our station, at the price above named. In towns outside of New York, offers have been made to supply current at lower figures. The more level the road, the cheaper obviously will be the cost of motive power. This is more particularly true of the storage battery, which in excessively steep and long grades becomes heated. The chemical energy, instead of exhibiting itself in the form of electrical energy, exhibits itself in the form of heat, with consequent injury to the battery. Cars will ascend very steep grades; but it is not deemed economical to attempt grades of more than 6 per cent., and they must be short at that rate. But there are few roads offering more and steeper grades than the road we are now operating on in New York. Each car has two sets of battery. A set is easily charged in about two-thirds of the time the other is in service. No time is lost in charging, as the battery is automatically put in circuit with the dynamo as soon as it is withdrawn from the car. Now that there is a complete group of cars in service in New York; it is hoped to follow those by another group of ten. More will be known about storage battery traction at our next annual meeting.

Mr. Bracken didn't mention this, but he was referring to the "accumulator cars" being operated by the Julien Company. The book "Electricity in daily life" from 1890 has a section "THE ELECTRIC RAILWAY OF TO-DAY" by Joselh Wetzler (Editor of the "Electrical Engineer." New York.) that shows a pic of the cars:
View attachment 1

Sadly, Mr. Bracken seriously understated the REAL costs of battery-electrics... he neglected to mention the lawyers fees...

Science, November 8, 1889
INDUSTRIAL NOTES.

Storage-Battery Litigation.
The Electrical Accumulator Company of New York have issued a circular under date of Nov. 1, in which they state that the litigation involving a patent monopoly of the secondary-battery industry has been so prolonged, and is so technical, that it is believed a few words of explanation are appropriate, in order to enable the public to have a clear understanding of the situation.

In March, 1887, suit in equity was commenced in New York by the above-mentioned company, owning the Faure patent, against the Julien Electric Company, designed to stop further infringement of that patent, covering improvements in secondary batteries. During the progress of the suit it became evident that the Faure patent would be sustained, and early in 1888 the Julien Company modified their method of applying the active material to the battery-plates. In March, 1889. Judge Coxe rendered his decision sustaining the Faure patent, and holding that it could be construed to cover any secondary battery having the active material applied to a plate or support in the form of a "paint, paste, or cement." The modified method of the Julien Company accordingly came within the scope of the Faure patent. On April 11, 1889, an injunction was issued restraining the defendants from further acts of infringement. In June the Julien Company petitioned the court for a rehearing of the case; and their factory, which had shut down in April after the injunction was issued, again resumed operations, the method of manufacturing the batteries being again slightly modified; which second modification, it was claimed, did not infringe the Faure patent. Apparently becoming alarmed at the probability that this second modification was also an infringement, the Julien Company devised a third form, and subsequently a fourth form was employed.

In August a new suit in equity was brought against the New York and Harlem Railroad Company and the Julien Electric Traction Company as co-defendants. These parties were using large numbers of these so-called new forms of battery. Motion was made for a preliminary injunction, and in October Judge Lacombe rendered his decision, which, as will be seen after careful perusal, virtually gave the Electrical Accumulator Company all that they asked or claimed. An injunction was issued on 0ct. 28, operating to stop the use of all of their four modifications as well as the original form. This decision of judge Lacombe has been printed for the information of interested parties. It is concise, accurate, and clearly defines what Brush is said to have done in anticipation of Faure's patent.

Quoting from the decision on this point, "What Brush did was to immerse a plate coated with dry material not only into fluid, but into the very fluid in which it was forthwith, and without removal therefrom, put to use as a battery plate." It is to be noted, that, under this decision, the manufacture of secondary batteries in any quantity will, if at all possible, be utterly impracticable without infringing Faure's patent.

It has yet to be demonstrated that such form of battery will work outside of the laboratory. It has never been done, although ten years have elapsed since Brush is said to have made the experiment; while manufacturers, both in this country and Europe, have been studying the problem with the strongest incentives to attain success.

The Electrician, November 15, 1889
Storage Battery Patent Litigation. - I may mention, by the way, that the Electrical Accumulator Company, whose cells, of course, are alone referred to, has just succeeded in obtaining an injunction against the Fourth Avenue Railroad in this city, which has been using the Julien cell on its storage battery cars. The cells in use having been made under the methods limited to the Electrical Accumulator Company, the judge has granted an injunction preventing the Julien Company from using cells in which the active material has in any way been applied to the plates in the form of a “paint, paste, or cement.” The Julien Company have, perforce, been obliged to suspend the running of their cars, which have won no small amount of popular favour. They are now understood to be actively engaged in manufacturing plates in which the active material is applied in the form of powder, and submitted to tremendous pressure. As soon as these plates are ready the cars will be put in operation again.


November 22, 1889
Storage Battery Patent Litigation. - There has been a very general feeling of regret among electricians and on the part of the public in this city at the stoppage of the Julien storage cars on Fourth Avenue, where, by this time, from 15 to 20 cars had actually been got ready and put in operation. These cars have stopped under the decision of Judge Lacombe, in the United States Circuit Court, which prevents the Julien Company from making their plates in various ways the right to which is ascribed to the Electrical Accumulator Company, and which leaves open to them the method whereby a perfectly dry powder is compacted upon the grid by hydraulic pressure and no fluid is added until the plate goes into use in the battery. The Julien people, it would seem, have been trying to accommodate the Court so as to make their plates in such a manner as to satisfy the judge that there was no infringement, and now that they have ascertained just what the judge deems right they will go ahead as briskly as at first, and will produce as many of the dry-powder plates as may be required. The company make the statement that these absolutely dry plates are far better than they had anticipated, and that they will answer their purpose better than any that they have employed heretofore. This dry-powder method is claimed as covered by one of the early patents of Mr. C. Brush, but this does not have any material bearing upon the case, it would appear, as it is rumoured that an alliance between the Brush and Julien storage battery interests exists. In fact, it is asserted that the Courts will probably sustain one or more of Mr. Brush’s patents in which is granted broadly the mechanical application of the active material in any form to a separate plate, whether that active material be a paint, paste, plaster, powder, or anything else beginning with a “p.” Should that be the case, Mr. Brush, or his representatives, would control the situation; but for the present the Electrical Accumulator Company are very well satisfied with the aspect of things, and propose to enforce as thoroughly as possible their rights with regard to manufacturing plates in which the active material takes the form of a paint, paste, or cement.


April 4, 1890
Storage Battery Decision. - An important decision has just been rendered by Judge Coxe, of the United States District Court, in the infringement suit between the Brush Electric Company and the Julien Company. This suit has been pending for some time, and, before the decision was rendered, the Julien Company obtained an option on the right to become licensees of the Brush Company; the option to remain in force 48 hours after the granting of the decree following the decision. The decision, which is a very voluminous one, is emphatic in favour of and sustains the broad claim of the Brush Company to a storage battery wherein the active material is applied to the plates by mechanical means of whatever kind. Pending this decision the Julien Company have been keeping very quiet, but now are reported as proposing to begin active operations at once under the Brush patent. With this decision, the storage-battery fight is left practically between the Brush Company and the Electrical Accumulator Company, and narrows itself down to a duel between Faure and Brush on the invention in question. An interesting flank movement may possibly be based on the expiration of Brush’s Italian patent, which is precisely similar to the ones on which the present decision has been rendered; for in a suit between Brush and the Accumulator Company, which is now in progress, if the decision should be in favour of Brush it would practically give the Brush Company and their licensees a monopoly of the storage battery business in America. If, however, by reason of the expiration of the Brush Italian patent, or for any other cause, the decision should be in favour of the Accumulator Company, the storage-battery field would be left quite open, since Faure’s American patents were considerably limited during the interference action in the Patent Office between Brush and Faure. In other words, if the Brush patent is upheld, it is so broad as to be very formidable. If the Faure patent is upheld, its limitations are such that it would be no serious obstacle.


The Electrical Engineer, April 18, 1890
Accumulator Patents. - The infringement suit of the Brush Electric Company against the Julien Electric Company of New York, which was brought some two and a half years ago, was decided by Judge Cox on the 14th ult. The decision was in favour of the Brush Company, although it is understood that the parties had come to a mutual understanding before the settlement of the suit - a curious illustration of the futility of lawsuits. This is the more the case that the suit between the Brush Company and the Electric Accumulator Company is still pending, but the decision would seem to give the Brush interests a point of vantage over the Faure patents. Meanwhile we suppose accumulators are desired, and are being made exactly as of yore.

The Electrical Engineer, June 11, 1890
REPORTS OF COMPANIES.

THE CONSOLIDATED ELECTRIC STORAGE COMPANY.

This company has just been organized for the purpose of manufacturing and selling storage batteries solely, with Mr. Wm. Bracken as president. The company owns the Julien storage battery patents - more especially that for the inoxidizable support plate - and the exclusive right to use for the whole of the United States all the Brush storage battery patents and inventions. Principal among these are the Brush patents, Nos. 337,298 and 337,299, covering the mechanical application of any absorptive substance to a conducting support; and the Brush patent, 266,090, which covers a support plate or a conducting support with receptacles for the active material; in addition to these, also, the Brush patent No. 260,654, which covers the application of oxide of lead to the support plate by pressure. The new company also owns the mechanical filler patents of Morris and Salom, which cover the process and machine for filling the conducting support or grids with active matter. They are more especially capable of doing this when the active matter is applied in the form of a powder. The two first mentioned Brush patents run 13 years from May, 1889; the mechanical filler patents have about 16 years of life, and the Julien storage battery patent, No. 347,300, being for his inoxidizable support plate, has about 14 years to run.

The Julien Electric Traction Company has sold its cars and everything in relation to traction to the United Electric Traction Company, the latter company having bought not only all the traction interests of the Julien Electric Traction Company, but also all the Daft companies, including the Daft Electric Light Co., with its factory at Marion, N. J., the Daft Electric Power Co., with its three stations in New York, and the Daft Electric Power Co. of Newark, and the Daft Electric Power Co. of Philadelphia. The United Electric Traction Co. have also purchased the Chamberlain battery rack patent. The United Electric Traction Co. has acquired from the Julien Co's. such patents relating to the application of storage batteries to the propelling of street cars, as will enable that company to make storage battery traction a specialty, but according to Mr. Bracken, there is no understanding, oral or written, between The Consolidated Electric Storage Co. and The United Electric Traction Co. as to the sale of batteries to the Traction Co. or as to favoring them in any way over any others desiring batteries for traction.

It will be the policy of the Consolidated Electric Storage Co. to furnish batteries to everybody on equally favorable terms. As indicating the demand there is for storage batteries, Mr. Bracken states that their Camden factory sold last month 1,294 accumulators although they have not a single agent in the field soliciting orders.


The Electrical Engineer, June 25, 1890
THE STATUS OF THE CONSOLIDATED ELECTRIC STORAGE COMPANY.

The Consolidated Electric Storage Company, of this city, have just issued the following important circular defining their status and their plans as manufacturers of the Julien battery and the exclusive licensees for the United States of C. F. Brush's storage patents:-

We take this means of informing you that this company has been organized for the manufacture and sale throughout the United States of the Julien Storage Battery. To that end, it has acquired those storage battery patents which, in its opinion, control the manufacture and sale of storage batteries for the United States.

In order that you may understand the scope of those patents, we will describe in a few words what constitutes a storage battery as at present universally made.

Gaston Plante, whose storage battery was the first to attract public attention, used the following method. He employed two plates of lead, which he immersed in a solution of sulphuric acid and water; he then applied a current of electricity which had the effect of creating on the surface of the plates, by disintegration of its substance, a spongy substance, known as active matter or absorptive material, being spongy reduced metallic lead on one plate and peroxide of lead on the opposite plate. This process required several weeks and sometimes months of charging, involving too much labor and expense to make the Plante battery one of commercial value. Radical and fundamental improvements were needed to make the storage battery what it is to-day. To Charles F. Brush, of Cleveland, Ohio, has been awarded, both by the United States Patent Office and the United States Circuit Court,(Electrical Accumulator Company vs. Julien Electric Company, 38 Fed. );., p. 117. Brush Electric Company vs. id., 41 id., p. 679, and decree entered on this decision on June 10,1890.) priority of invention of those improvements. Mr. Brush obtained the same technical results as Mr. Plante by applying the active matter to the plates mechanically before immersing them in the solution. He also made receptacles in the plates and mechanically filled those receptacles with lead oxides (active matter) by pressure. He then put the plates into the solution and subjected them to a charging current, by means of which he obtained in a few hours the results which Plante reached only in weeks or months of charging. The battery thus made had, moreover, much greater capacity than those of the Plante type. This method has, for obvious reasons, superseded that of Plante, and since Mr. Brush's invention (1879) all commercial storage batteries are made by applying the active matter mechanically to the plates. The plate, wall or support to which the oxides are applied is known as the support plate or conducting support, and the oxides applied to the conducting support are generally called the active matter or absorptive substance. The solution in which the conducting support, with the absorptive substance applied thereto, is immersed, and which usually consists of sulphuric acid and water, is called the conducting liquid or electrolyte. Mr. Brush applied for patents for his inventions. He was put in interference with Camille A. Faure, who made similar claims to invention (Electrical Acc. Company vs. Julien Electric Company, 38 Fed. R., at p 130. Brush Electric Co. vs. Julien E. Co., 41 Fed. Rep., at p. 686.), and after a long and bitter contest for a period of four years before the patent commissioners, Mr. Brush was awarded priority: and on March 2, 1886, United States Patent No. 337,299 was issued to him. This patent covers broadly the mechanical application in any form (whether powder or paste) of the active matter or absorptive substance to a support plate. This is the decision of the United States Circuit Court in the case referred to. Any method of application by hand or machine is "mechanical." The court also decides that the words "active matter" and "absorptive substance," as used by Mr. Brush, are synonymous, and include not only lead oxides but every other substance that is absorptive (and it must be absorptive to be of any value), applied to a conducting support." It does not matter what shape or size the conducting support may take, whether it be smooth, perforated, woven wire, flat, cylindrical, etc.; so long as it is a "conducting support," it is an infringement of the above patent.

In addition to this broad invention, this patent also covers, expressly and by specific claims, the support coated with mechanically-applied metallic oxide, oxide of lead or equivalent lead compound, and red lead; and also such a support when provided with "receptacles" filled with the mechanically-applied oxide of lead or other "active material."

The word "receptacles" was found by the Court to include perforations extending through the plate.

This patent has nearly thirteen years still to run and is controlled by this company. Another important patent now controlled by this company was sustained by the United States Circuit Court, viz.: Patent No. 266,090, covering a support with "cells," "cavities," "slots" or "perforations," and the words "cells or cavities" were held by the Court to include perforations as well as cavities of other forms.

Patent No. 260,654, also controlled by this company, covers the application of the "absorptive substance" to the "conducting support" by "pressure," whether exerted by hand or a machine.

The batteries made by the Gibson Company, The Electrical Accumulator Company, The Pumpelly Company, The Woodworth Company, The McLaughlin Company, The Anglo-American Company, and others, consist, all of them, of a "conducting support" and "absorptive substance" mechanically applied thereto, and are clear infringements of the Brush patents.

This company has also acquired United States Patent of Edmond Julien, No. 347,300, covering an "inoxidizable" "conducting support." Experience has shown that the "conducting support" is so influenced by the electric current as at an early stage to oxidize and become disintegrated. Mr. Julien, who was one of the first inventors and workers in the field of the storage battery, has discovered a certain alloy of lead and other metals, whereby this defect in the plain lead support is overcome. It is regarded as a most valuable invention. The patent has ten years to run.

To guard against imposition by persons who may pretend to have discovered a new battery, we wish to inform the reader that it is universally admitted that so far as scientific research has gone, only the metals and their salts (metallic oxides), may be employed to make a commercially useful storage battery, and only those metals and their salts may be employed which are practically insoluble in the electrolyte. The elements or electrodes of a commercially useful storage battery consist of two parts, first, a "support," and second, an "active" or "absorptive" substance applied and secured to the support. Gold and platinum, but for their costliness, would be the most useful metals to employ for the support, as they are practically inoxidizable in the electrolyte, or exciting fluid or solution of the battery. Of all the cheaper or base metals, lead possesses in the highest degree this immunity from attack by the exciting fluid or solution, and for this reason it has been chiefly employed where a simple metal has beeu used for the support plate.

The alloy of lead, antimony and mercury patented to Edmond Julien is, however, far superior to lead in this respect, and approaches more nearly than any other metal or alloy, the cost of which would permit its use, to gold and platinum.

Many attempts have been made to use various metallic compounds for the active or absorptive substance to be applied to the supports. These have been applied in various ways, but no commercial success has yet been reached by any experimenter in the use of any substance or by employing any method of application except reduced (or spongy) metallic lead and its oxides, mechanically-applied and secured to the support plate.

Time would be wasted in listening to the pretensions of any inventor who professes to have contrived a commercially useful storage battery the elements of which do not consist of a metallic support practically inoxidizable in the electrolyte or solution, having mechanically applied to or secured thereon either reduced spongy metallic lead or one of the oxides of lead, or equivalent lead compound.

This company has also acquired United States Patents No. 383,757 and 408,986, of Henry G. Morris and Pedro G. Salom. Messrs. Morris & Salom have been engaged, for some years past, in devising suitable machinery for the effective and economical manufacture of storage batteries. These patents cover a machine known as the Mechanical Filler. Prior to the invention of this machine, the active matter was applied to the "conducting support" by hand. The method was laborious and expensive and the work generally uneven and unsatisfactory. The mechanical filler obviates all these difficulties. By its use each machine dispenses with the labor of from thirty to forty men, and fills the plates uniformly and far more effectually than can be done by hand. It is the first and only machine of the kind that has ever, so far as we can learn, been invented or claimed to have been invented, and as it is both novel and highly useful, we deem the validity of the patents unquestioned. These patents have about sixteen years to run. It will be seen from the above that agents and electric companies, in recommending the batteries of this company to their customers, will be freed from the annoyance of litigation.

TRADE NOTES AND NOVELTIES AND MECHANICAL DEPARTMENT.

THE CONSOLIDATED ELECTRIC STORAGE COMPANY.

The important circular issued by this company from its offices, 120 Broadway, is printed elsewhere in this issue. To the New York headquarters all communications as to agencies and licenses should be addressed. All orders and inquiries for batteries should be addressed to the company, 926 Drexel Building, Philadelphia. The Atlantic Trust Co., trustee, representing more than two-thirds of the stock of the Julien Electric Traction Co., offers to the remaining outstanding minority stockholders of the said company the privilege of exchanging their stock, share for share, for Consolidated stock, without payment of assessment or expense. The Consolidated Company has a capital stock of $3,000,000 in shares of $25. It has no bonds and no preferred stock, and as is well known, controls the Brush fundamental storage patents.

The Electrical Engineer, January 21, 1891
THE UNITED ELECTRIC TRACTION CO.

The United Electric Traction Co., at 115 Broadway, has been levied on by the sheriff, on attachments aggregating $1,600 and a judgment for $804. The company is said to have been asking extra time on maturing obligations recently, and the total amount of unsecured indebtedness is said to be $150,000, while it is understood to have large assets. Leo Daft has brought suit against the company, the Daft Electric Light Co. and others to recover $50,000, and to set aside a contract relating to the exchange of stock of the Daft Company for that of the United Electric Traction Co., and to recover property of the Daft Company from the United Company. This suit may be discontinued.

It is declared by the officers of the United Company that its financial condition is being substantially strengthened.

The United Electric Traction Co. was incorporated in March, 1890, in New Jersey, with an authorized capital stock of $7,000,000 of which $5,000,000 was common stock. A large part of the latter was issued for the stock of the Daft Electric Light Co. and the Electric Power Co., of New York, and the right to use patents on storage batteries of the Julien Electric Co., the Julien Electric Traction Co. and the Brush storage battery. It assumed debts of the Daft Co. and of the Electric Power Co. amounting, it is said, to $400,000. and guaranteed $100,000 bonds of the Julien Electric Traction Co. It was said to have received from the Daft Co. tangible property worth $1,000,000, not including patents.

The company has been mainly developed by R. L. Belknap, ex-treasurer of the Northern Pacific Railroad, and Dr. John C. Barron. Mr. Belknap was its president until December last, when he was succeeded by J. Edward Ackley. In the same month the company gave a chattel mortgage of $700,000 to the Mercantile Trust Company to secure bonds.

The Electrician, August 7, 1891
AMERICAN NOTES.
(from Our Own Correspondent.)
New York, July 25, 1891.

The Brush Accumulator Patent. - The protracted patent litigation between Mr. Brush and the Electrical Accumulator Company has just been terminated by the decision of Judge Coxe emphatically in favour of the former. This practically gives Mr. Brush and his assigns the monopoly of the lead accumulator in this country if they choose to assume it. From the nature of Judge Coxe's decision last year in the suit between the Julien and Brush interests the result of the present action was to be anticipated. What its effect will be it is as yet too early to state. The Julien Company, sole licensee, under the Brush patents, certainly holds the key to the situation. Apropos to this the United Electric Traction Company will resume, it is stated, the operation of its accumulator cars on the Fourth Avenue road in this city, which have been discontinued for some months.


The Telegraphic Journal and Electrical Review, August 14, 1891
Storage Battery Litigation in America.

It will be remembered that three years ago the Julien Company put several storage battery cars upon the Fourth Avenue tramlines in New York. The Julien cells were then considered an infringement upon the inventions of Faure and Brush. The Electrical Accumulator Company (owning the Faure patents) and the Brush Company thereupon sued the Julien Company in a court of law and an injunction was obtained by the Accumulator Company, which, however, was evaded by means of a dry oxide powder being used in manufacture instead of the "paste paint or cement" claimed by Faure. More recently, the Brush Electric Company brought suit against the Electrical Accumulator Company in the United States Circuit Court where Judge Coxe, who also decided the former case, sustained the storage battery patents of Charles F. Brush. This brings virtually to an end the litigation which for five years has been carried on by the Julien Company, the Brush Electric Company, and the Electrical Accumulator Company, for the control in the United States of the manufacture and sale of storage batteries made of oxide of lead supported mechanically upon metallic frames, and it removes the obstacles in the way of their introduction for purposes of lighting and traction. It is a remarkable fact that the Electrical Accumulator Company, which bought the patents from the original English E.P.S. Company, has all but been wound up soon after its victory against the Julien Company; at any rate, the factory at Newark has long been shut down, and the little business which is left is being carried on by the Electro Dynamic Company in Philadelphia. The old Julien Company has gone to the wall after its resources had been consumed in profitless pioneering and legal fighting, but it has again been resuscitated under the name of the Consolidated Electric Storage Company, holding an exclusive license throughout the United States for the Brush storage battery patents. The latest decision practically awards to the Brush Electric Company the monopoly in the manufacture of secondary batteries having a mechanically applied coating of active material. Judge Coxe, in his decision, says: "Mr. Brush was the first in this country to make the broad invention. He is entitled to the fruits of his invention. It is the policy of the law to reward him." The Brush Electric Company, it must be remembered, has never been in the market with its storage battery, although it has spent upwards of a hundred thousand dollars in experiments. It will be interesting to watch the further developments of this business in America; up to the present no one seems to have benefited by it except the lawyers.

NYT_1894Dec5.jpg

Today, the Electric Storage Battery Company is known as Exide Technologies:
http://www.exide.com/
 
Alton Evening Telegraph
June 27, 1896
AN ELECTRIC BICYCLE.

One Has Been Constructed that Weighs Sixty Pounds.

A New York man has at length perfected an electric bicycle. It is light and speedy and gives every promise of perfect success. Taking a wheel weighing twenty seven pounds, Mr.James O'Brien, inventor of the electric bicycle, has added a battery, motor and switch-board, which together bring the weight up to sixty pounds. The battery, which is known as the dry chloride, is the main part of Mr.O'Brien's invention. Its weight is about fifteen pounds, which is considerably less than anything used in previous experiments. With this battery a force can be maintained which will carry the bicycle over rough country roads, up hill and down hill, for a period of forty-eight hours. The speed of the electric bicycle is practically unlimited. It has been tested up to nearly fifty miles an hour, faster than which no one has yet dared to try it.
Alton_Evening_Telegraph_1896June27.jpg
From the illustration it will be seen that the electric attachments occupy comparatively little space. They can be easily detached, and the machine can be used in the ordinary way. Should the battery or any part fail, it is not necessary to remove these parts. If at any time the rider wishes to use the pedals instead of the electric power, a small switch will cut off the current. The switchboard is placed in the illustration below the bar, but the inventors latest improvement places it under the handle, so that it can be reached without trouble by the rider. A woven silk band is used to connect the motor with the hub of the rear wheel. A striking feature of the machine is, of course, the electric head lamp, the illumination from which extends over a radius of thirty feet. The inventor is an electrical engineer of experience. He has patented machines for preventing collisions at sea, scintillating signs and nickel-in-the-slot machines. He considers the battery which operates the electric bicycle his greatest achievement.


Westminster Budget
Friday, May 22, 1896
Talk on the Cycle Track.

The electric bicycle has at last been perfected - of course, by a Yankee. It is described as light and speedy, and gives every promise of perfect success. Taking a wheel weighing 27lb, Mr.James O'Brien, inventor of the electric bicycle, has added a battery, motor and switchboard, which together bring the weight up to 60lb. The battery, which is known as the dry chloride, is the main part of Mr.O'Brien's invention. Its weight is about 15lb., which is considerably less than anything used in previous experiments. With this battery a force can be maintained which will carry the bicycle over rough country roads, up hill and down hill, for a period of forty-eight hours. The speed of the electric bicycle is practically unlimited. It has been tested up to nearly fifty miles an hour, faster than which no one has yet dared to try it. This "bike" should catch on.
 
Electric Bike Drive Kits only $99.+ !

...in the Classifieds, Popular Science magazine, September, 1995:
View attachment 1

Just nice to see these ebikers still around today:
http://omni.mcn.org/

Their "EROS" Bicycle Electrification System starting to look a bit retro...
http://omni.mcn.org/eros/eros.html
erosbike.gif

Pricing:
The basic EROS system ready to install with batteries and charger is $199.00
400 Watt motor version is $219.00. Upgrade to 3 Ampere charger for $20.00

Remote cable lift-off for motor: $20.00, Indoor power stand for excercise training: $40.00

Variable load generator to adjust excercise load/battery charge rate at low speeds: $50.00

Custom configurations available (dual motors, accessories, electronic speed controller, etc) consult factory for further information; fax or write:

Omni Instruments, POB 96, Albion, CA 95410
Order Line, Fax (707)937-0603
 
Yah, OK, not really an iron horse, but it's fun to see these crazy Victorians playing with giant rail guns...
US342666a.jpg

View attachment 5

New_England_Portelectric_Co_1889_Maine_175.jpg

The Electrical World, August 31, 1889
The Portelectric Company. - This company, whose working model in the old South Church, Boston, has been creating such a deep interest, has now completed arrangements by which they have secured for one year or more a piece of land on the New York & New England Railroad at Dorchester, between Howard street station and Mount Bowdoin station. The structure will be about a mile long, and will be oval or rather pear-shaped. The superstructure, being a temporary one, will be of wood, and will probably stand about six feet high, and will be fitted thoroughly and completely with the helices and complete apparatus required for the working of the plant. The contract for the super-structure has been let, and a survey made, and work will be commenced very soon. The structure when finished will show straight sections, curves, grades, curved grades and switches, and everything will be made as thorough and as varied as possible, so that complete data may be secured on which to base the calculations for a long line. The helices will be about six feet apart, and the carriage will be twelve feet long, with a circular section of about ten inches. Much interest is being felt in this big experiment, and it is safe to say the eyes of the whole electrical world will watch with intense interest the success of these trials. Mr. Williams is to be congratulated upon carrying his invention thus far, and it is to be hoped that brilliant success will attend his future efforts. A.C.S.


The Electrical World
October 18, 1890
The Portelectric System.
On another page we give a view of the experimental track of the New England Portelectric Company, a short distance from Boston. It will be remembered that this Portelectric plan for electrical conveyance of packages was brought out considerably more than a year ago and has since then been undergoing a process of evolution, such as is the fate of every similar invention, until now some rather interesting results have been reached. The experimental track is something like half a mile in length, with grades and curves enough to give a fair idea of the results that may be expected in practice. The experiments already made have shown that fairly high speed can be maintained and that the switch mechanism that furnishes the current to successive solenoids can be made to operate successfully. The plan of setting a car in motion by a direct electromagnetic pull is of so novel a character that the progress of the Portelectric Company has been watched with considerable interest. Of course from the data now at hand it is impossible to say anything definite regarding the economy or general efficiency of the system; but it has been satisfactorily demonstrated that the car will run at a very high velocity and can be operated and controlled sufficiently well to make the question of its commercial success depend largely on economy of construction. In short, the Portelectric system has worked better in an experimental way than was anticipated by most electricians.

Experimental Plant of the Portelectric System.

It is now something more than a year since the exhibition of the model of the Portelectric system in the Old South Church in Boston. The subsequent description of this promising invention in the daily newspapers and technical journals attracted the notice of people in all parts of the world. It was at once recognized that, could the model be duplicated on a large scale, and be made to work with the same degree of success, its commercial utility and importance in the rapid transportation of mail and express packages would be very great. Since the invention was first exhibited to the public, its projectors have been busily engaged in the construction of an experimental track upon which the "portelectric" car could be tested under conditions similar to those which would be met in actual practice, and fully as severe as those which would be encountered in commercial operation.

This experimental plant, which is located near the Howard street station on the New York & New England Railroad in the suburbs of Boston, has been completed and in experimental operation for some time, but its construction and operation have been open to the inspection of the public only since the 11th of this month. Notwithstanding the difficulties, mostly of a mechanical nature, which necessarily had to be met and overcome in pioneer work of this kind, the experimental work has proved so successful that the performance of the system re-enforces the opinions formerly held by its projectors concerning its future commercial importance.

It will be remembered by those who read our former description of the project (See The Electrical World, May 1,1889) that the system is intended for the transportation, not of passengers, but of mail and express matter only at rates of speed approximating two miles per minute, the steel car being drawn along its confined path at this high rate by the pull of numerous solenoids through which the track is laid, each coil exerting its power for a short time only as the car approaches it. In general principles the experimental track here described and illustrated does not differ from the model exhibited in the Old South Church last year. In the mechanical details, however, such changes have been made as have been found by actual experience to be necessary to adapt the system to the requirements of commercial service. The method of closing and opening the circuit through the track solenoids at the proper time has been changed; the mounting of the car upon its wheels, the construction of the track and some other mechanical details have been greatly improved. Prof. A. E. Dolbear, the electrician of the company, and Mr. John T. Williams have given the matter almost daily attention for several months, and especial care has been directed toward the reduction, as far as possible, of the copper wire required in the coils of the track solenoids.

The experimental line is nearly 3,000 feet long, built in the form of an oval or somewhat of a pear shape, including two curves of different radii, some straight and level sections, and grades, both on a straight track and on curves. One grade is 8 per cent, and another 11 per cent. Posts 10 inches square are set solidly in the earth to a sufficient depth to be undisturbed by frost, and are packed about with sand. These posts project above the surface to a height of about four or five feet, and to their sides, at the top, are strongly bolted planks, three by ten inches, set on edge and carefully fitted, so that the top of the planks is flush with the top of the posts. Posts are set at intervals of six feet. This low structure was so built simply for convenience of access in conducting experimental investigation.
The_Electrical_World_1890Oct18.jpg
A very neatly designed and well constructed power house stands directly over the track, as is shown in the illustration on this page. Its architectural features are the design of Mr. J. Philipp Rinn, a Boston architect. The track passes directly through its centre at a distance of about two feet from the floor. The building is surmounted by a lookout tower, from which the car may be watched as it speeds around its half-mile course.

The power equipment of the station consists of a Sturtevant 20 h. p. engine and an Edco dynamo to furnish current for the propulsion of the car. This dynamo is wound for a pressure of 1,000 volts. A horizontal tubular boiler supplies steam for the engine and for the heating of the building as well. A small supply and work room is conveniently arranged in one corner of the building. The station is lighted by Bernstein series incandescent lamps, and the track is lighted when necessary with seven arc lights.

Upon the heavy framework of wood of which the track structure is composed are placed the solenoids, a series of coils extending along the entire track at intervals of six feet. These coils have an internal diameter of eleven inches, and are each made of about 20 pounds of No. 14 wire. The two rails of the track extend through these coils, one at the top and the other at the bottom. The lower track is in connection with one terminal of the dynamo and the other terminal is connected with a lead wire parallel with the lower track. To this wire are attached branches connecting it to the various sections of the upper track, these sections being about six feet long. The passage of the car completes the circuit between the upper and lower rails through the solenoid in advance of the car, and the car is thus pulled into the coil until it is midway through the coil, when the current is cut out and transferred to the next coil in advance.

The car is an iron cylinder 10 inches in diameter and, with its conical ends, is 12 feet long and weighs 350 pounds. It runs on two wheels, and also has guide wheels to run on the track above the car. Doors upon its side allow of the necessary matter constituting the load of the car to be placed upon its inside and securely locked in place.

The greatest difficulty experienced in the operation of this track and car was in the adaptation of the car to the compound curve, made up of a grade and a curve of short radius. It was found necessary to make the car itself rotate to accommodate itself to the curve and grade, thus introducing a great frictional resistance. In spite of this, however, the car has been drawn about the oval track in about one and a half minutes, and its speed has reached about 43 feet per second. The greatest acceleration observed was about 3 1/2 feet per second, which, if maintained for a minute, would give a speed of about two miles per minute. The shape and difficulties of the present track, however, prevent the acquiring of such a speed.

In forming an opinion of what has been already accomplished by the plant described above, it should be borne in mind that the whole project was so new that every step has had to be taken without the assistance of any precedent, or of the experience of others in similar work. Its growth, however, has been very satisfactory, and Professor Dolbear asserts that there is every reason for thinking that in a short time the car will be capable of running away from the swiftest express train.


The Electrical Engineer
May 20, 1891
New England Trade Notes
The New England Portelectric Co. gave a special exhibition this week of their system at Dorchester, to representatives of the Boston press. Mr. F. L. Pope, of New York, recently made an exhaustive report upon the practical working and possibilities of the system, and his estimates are extremely favorable. The Boston daily press are all loud in their praises of the progress made in the experimental track, a speed being now attainable of about 40 miles an hour. A full description of the experimental plant will be given in an early issue.

May 27, 1891
AN ELECTRIC DISPATCH SYSTEM.
It has, for some time, seemed probable that one of the developments of the near future, in the way of transportation, would take the form of an electric dispatch system for carrying mails and certain classes of express matter at a high rate of speed between our principal commercial centres. Among the plans thus far proposed, perhaps the most unique is that of the Portelectric Company, of Boston, which may be regarded as a development, on electrical lines, of the pneumatic carrier system, which has long been in successful use in large cities for similar purposes. The report of Mr. Pope, which we reprint elsewhere, is, so far as we know, the first expert investigation of the actual merits of the portelectric scheme whose results have been made public, and the facts and figures given are of great interest. Mr. Pope's conclusions, though conservatively expressed, seem to leave little room to doubt the practicability of the system from a technical standpoint. It is true that the original cost of the plant must necessarily be greater than one in which traveling motors are employed, in accordance with ordinary practice, yet the absolute simplicity of the devices used, and the enhanced possibilities of speed which must result from the direct application of the propelling power to the carrier, are features whose importance may easily be overlooked at first sight. It certainly cannot be unreasonable to suppose that the factor of mechanical resistance in this apparatus can be reduced at least as low as that of an ordinary railway train, and granting this, Mr. Pope's predicted rate of speed of 150 miles per hour ought to be attained without difficulty, with the existing electrical appliances, at a very moderate cost for operating expenses.

We predict that the managers of the express and forwarding companies will be quick to see, in some such system as this, a possibility of enormously increasing the scope of their operations, for it needs but little consideration to show the practicability of a system of special delivery by which a letter or small package dispatched from New York could be delivered to the addressee in Boston within two hours, at a charge of ten cents or less, and yet leave a handsome profit to the carrier. That something of this kind will be done at an early day, and that such a system will divert a considerable share of the traffic that is now conducted by the mail and telegraph, there can be little reason to doubt.

THE NEW ENGLAND PORTELECTRIC COMPANY'S SYSTEM OF TRANSPORTATION.

Since the close of the exhibition of the model of the Portelectric in the "Old South Church," Boston, over a year ago, persistent and unremitting efforts have been made to determine all the conditions necessary for the construction of a commercial line for practical business purposes. Much delay has been caused in the progress of the work by the severe and uncalled-for test to which the invention was put by the contracted course which the company was compelled to adopt, and which gave little opportunity for straight runs, so essential to the development of high speed.

The present experimental track is situated at Dorchester, Mass., and the tests have been carried on under the supervision of Mr. J. T. Williams, the inventor of the system, assisted by Prof. A. E. Dolbear, the electrician of the company. In a report recently made by Mr. Franklin L. Pope, we gather some interesting details as to the methods employed and the possibilities of the system.

The experimental plant at Dorchester comprises an endless track. Figs. 1 and 2, elevated upon a wooden trestle a few feet above the ground, 2,794 feet in circuit, consisting of one tangent of 492 feet, and another of 430 feet long, united at their ends by two curves, one of which is 1092 feet long and 282.5 feet radius, and the other 780 feet long and 234.4 feet radius. The track in the first tangent of 588 feet, is level, while in other portions of the circuit are grades rising to a maximum of 4 1/2 per cent., or 227 feet per mile.
The_Electrical_Engineer_1891May27Fig1.jpg
The track consists of an upper and a lower rail, formed of barsteel 3/4 inch by 1/4 inch, fastened by countersunk screws to stringers. The upper stringer is of wood, 2 inches square, and the lower also of wood, 2 inches broad by 4 inches deep. The upper rail is supported and braced at intervals of about 3 feet.
The_Electrical_Engineer_1891May27Fig2.jpg
The carrier, Fig. 3, is a hollow cylindrical projectile of wrought iron, with ogival ends, the cylindrical portion being 8 feet long and 10 inches in diameter, the length 12 feet over all, and the weight appromately 500 pounds. It is provided with two flanged wheels above, and two underneath, all of which, being fitted with ball-bearings, revolve with very slight fiction.
The_Electrical_Engineer_1891May27Fig3.jpg
The propelling power is derived from a series of hollow helices of insulated copper wire, each of which encircles the track and carrier. These are fixed along the permanent way at intervals measuring 6 feet from centre to centre. Each helix is composed of 630 turns of No.14 copper wire, in five layers, weighing about 20 pounds, and having a resistance of about 5 ohms. A contact wheel, mounted upon the carrier, and running in contact with the upper track-rail (which is divided into sections, and utilized as an electric conductor), connects the several helices in succession with the source of electricity as the carrier moves forward upon the track.

The electric current is supplied by a dynamo having a maximum capacity of about 8,000 watts, or a little over ten horse-power, driven by a steam engine rated at ten horse-power.

Experiments were first made to determine the maximum speed of carrier which could be obtained from the appliances in use at the time of inspection. This was found to be 2,784 feet in 56.5 seconds, or 49.3 feet per second, equal to 33.5 miles per hour.

The consumption of electric current, or rate of electric work while the carrier was in motion, was between nine and ten electric horse-power. The maximum tractive effort with a current of ten amperes was found to be 80 pounds. The electrical force producing this magnetic attraction was 6,300 ampere-turns.

The rate of acceleration was found to be as high as 4.5 feet per second. The force of traction required to produce this acceleration, with the carrier of 500 pounds' weight, is about 70 pounds.

A tractive effort of 70 pounds, exerted upon the carrier moving at the rate of 50 feet per second, requires the expenditure of 6.3 horse-power, or 4,712 watts. As the average electrical energy supplied appeared to represent something like 8,000 watts, the efficiency of the helices and carrier, considered as an electric motor, may be estimated at about 60 per cent., which figure agrees very well with other determinations of solenoid magnets. There are eight hundred and eighty helices, and seventeen thousand six hundred pounds of insulated wire per mile in the helices, in addition to that in the main conductors.

As each coil is ordinarily in circuit for only a fraction of a second at a time, it is evident that a volume of current per unit of sectional area may be used with impunity in this case, which would be wholly inadmissible under ordinary conditions.

The provision for power required to propel the carrier at the assumed rate of 150 miles per hour, may be taken at fifteen hundred volts and seven amperes per forty miles of single track, or about 0.33 horse-power of generating capacity per mile. This may be estimated, including steam plant and buildings, at $125 per horse-power, or, say, $45 per mile.

The actual cost of the electric power required to propel the carrier at this rate may fairly be taken at five cents per horse-power hour, including cost of attendance at stations. The mere cost of power for propelling a carrier from Boston to New York would therefore not exceed seventy-five cents per trip.

Excessive estimates of the cost of a double-track line, making liberal allowances in all directions, do not exceed $35,000 per mile, or about $7,000,000 for a line between Boston and New York.



December 23, 1891
THE UNITED STATES PORTELECTRIC CO.

Articles of incorporation of the United States Portelectric Company, with a capital of $5,000,000, were forwarded from New York to West Virginia last week, the company having been organized under the laws of that State. The following are the incorporators: Thomas L. James, ex-Postmaster General; ex-Judge A. J. Dittenhoefer, John Straiton, Charles F. James, Percival Knauth, William James. John T. Williams, Colonel Henry Huss, Frank Lawton, and Whipple V. Phillips. The company controls a device for the transportation of mail and express packages at a high rate of speed, which, it has been reported, will probably be utilized by the Post Office Department. There has been an experimental plant in operation in Dorchester, Mass., for the past year. The modus operandi was illustrated and described in The Electrical Engineer, May 27, 1891.

Portelectric secured a Canadian patent too, on July 27, 1892...

Somehow the American Philosophical Society got a hold of the "International Portelectric Company" Board of Directors meeting minutes from 1888 to 1893, but after that the trail goes cold...
http://www.amphilsoc.org/mole/view?docId=ead/Mss.621.319.I84r-ead.xml

I see Wikipedia has an entry for "rail gun":
http://en.wikipedia.org/wiki/Railgun
History
In 1918, French inventor Louis Octave Fauchon-Villeplee invented an electric cannon which has a strong resemblance to the linear motor. He filed for a US patent on 1 April 1919, which was issued in July 1922 as patent no. 1,421,435 "Electric Apparatus for Propelling Projectiles".

Fauchon-Villeplee's US patent of 1919 was 34 years later than John T.Williams first patent...
 
Pretty impressed with Ludwig...

As a younger guy he like beer:
Ludwig_Mond_right_c1856.jpg
(that's Ludwig on the right)

Then for the next few decades he was into chemistry:
http://en.wikipedia.org/wiki/Ludwig_Mond
Mond supported scientific societies and, with Henry Roscoe, helped to expand the small Lancashire Chemical Society into the nationwide Society of Chemical Industry of which he was elected president in 1888. He was elected to the Royal Society in 1891. Abroad, he was elected to membership of the German Chemical Society, the Società Reale of Naples, and the Prussian Akademie der Wissenschaften. He received honorary doctorates from the universities of Padua, Heidelberg, Manchester and Oxford and was awarded the grand cordon of the Order of the Crown of Italy.

By the late 1880's electrical stuff was getting huge. The telegraph, arc lighting, incandescent lighting, then dynamos and motors and rechargeable batteries... So new patents for all this stuff were just flying out the door.

Lots of patents on how to improve processes around rechargeable batteries (without stepping on Faure/Brush toes) then in 1888/1889 Ludwig and his assistant Carl Langer get patents for something they call their "gas battery":
US409365.jpg

These guys were really thinking outside the battery box...

The Smithsonian has some nice pages "Fuel Cell Origins: 1840-1890"
http://americanhistory.si.edu/fuelcells/origins/origins.htm

The Smithsonian credits William Robert Grove with the idea, then Friedrich Wilhelm Ostwald with working out the basic theory:
In 1893, he experimentally determined the interconnected roles of the various components of the fuel cell: electrodes, electrolyte, oxidizing and reducing agents, anions, and cations.

Then:
Fuel Cell Origins: 1880-1965
In the 1880s designs for workable gas batteries began to emerge from laboratories in Europe and the U.S. Many researchers began to consider the possibility of converting coal or coal gas directly into electricity by use of these units. Coal was a major source of fuel and coal gas sometimes was referred to as fuel gas. Grove's gas battery came to be called a "fuel battery" and then a "fuel cell," though the exact details of the term's origin are still unclear. Below is a brief overview of fuel cell researchers of the late 19th and early 20th centuries and their contributions.

and top of their list for early fuel cell researchers:
Chemist Ludwig Mond (1839 -1909) spent most of his career developing industrial chemical technology such as soda manufacturing and nickel refining. In 1889, Mond and assistant Carl Langer (d. 1935) described their experiments with a fuel cell using coal-derived "Mond-gas." They attained 6 amps per square foot (measuring the surface area of the electrode) at .73 volts. Mond and Langer's cell used electrodes of thin, perforated platinum. They noted difficulties in using liquid electrolytes, saying "we have only succeeded by using an electrolyte in a quasi-solid form, viz., soaked up by a porous non-conducting material, in a similar way as has been done in the so-called dry piles and batteries." An example given is an earthenware plate "impregnated by dilute sulfuric acid."

Hehe... >4 watts per square foot... still, it's a standout "battery" patent for the time... From the abstract for the patent:
Gas-batteries have hitherto been made by bringing two gases capable of chemical action upon each other - such as hydrogen and oxygen - into contact with solid substances which have the power of absorbing or condensing these gases - such as platinum and carbon - and immersing these absorbing substances partly into a liquid electrolyte, which keeps the two gases separated. All these batteries have proved very ineffective and of no practical utility. In the earlier ones, in which the absorbing substance remained stationary in the liquid electrolyte, the active,surface was exceedingly small, and consequently the duty done by the battery was insignificant. In the later ones, in which the absorbing substance was alternately exposed to the gas and to the liquid electrolyte by moving either the former or the latter, the absorbing substances became covered by a film of liquid which almost destroyed their power of absorbing gases. In order to overcome both these difficulties, we abandon the use of a simple liquid electrolyte and substitute for it a solid porous substance, which we impregnate by a liquid electrolyte, so that the absorbing substance coming into contact with it remains dry enough to retain its absorbing power for the gases to a sufficient degree. The porous substances used for this purpose must be non-conductors of electricity. They must be unalterable by the other substances with which they come in contact in the battery, and must be impermeable to gases after they have been impregnated with the electrolyte. A great many substances can be used for this purpose, among which we may name paper, pasteboard, infusorial earth, sand, asbestus, clay, leather, linen, flannel, &c.

Half expecting to stumble across a patent for a flux capacitor next...
 
The Electrical World, September 7, 1889
The Electric Launch "Electron."
Several successful trips have recently been made in New York waters by the launch "Electron," built at Newburgh by Mr. John Bigler. It having been decided that the boat would be used for pleasure excursions for parties of twenty or more, and that it would be desirable for it to have storage capacity for trips of considerable length, a condition never before attempted, the boat was made with great breadth of beam, in order to insure sufficient displacement to enable it to carry a large amount of battery. Great speed was therefore not contemplated, and the fact that the "Electron" easily attains twelve miles per hour, a speed seldom equaled by boats of its size, speaks well for its lines. The hull of the "Electron" is constructed of sheet-iron plates one-eighth inch in thickness, and is 36 feet long over all. It is decked over forward and aft. and has a raised roof amidship, which provides a roomy cabin, light being admitted from windows in the sides. A cupola at the forward end of the cabin serves for the pilot-house, and all switches and indicators for regulating speed and measuring the current are in easy reach of the man at the wheel.

The screw of the launch is 18 inches in diameter and of such a pitch as to allow the motor to revolve at about 1,000 revolutions per minute for its maximum speed. The motor itself is coupled directly to the screw, the armature shaft and screw shaft being rigidly united and practically forming a single shaft. Between the motor bearings and stuffing box there is a spring bearing and a double-thrust bearing, all easily accessible for oiling. The motor, which, with the switches, is from the works of the Electro-Dynamic Company, of Philadelphia, is placed beneath the cabin floor, somewhat back of the centre of the boat, and is entirely exposed by the removal of a glazed trap-door. It is a series motor, and weighs about 500 pounds. The winding of the motor is such that it will carry a current of 70 amperes at 200 volts or nearly 20 electrical horse power. The normal working rate of the batteries is 50 amperes at 200 volts pressure, about 13 electrical horse power, but they can be drawn upon at the 20 h. p. rate for brief periods of time when a very high speed is required.

The accumulators were manufactured by the Electrical Accumulator Company, and consist of 200 cells of their newest form of motor battery, known as the "23 M" type. Each accumulator is contained in a vulcanite cell 6 3/4 inches long by 7 1/8 inches wide by 9 7/16 inches high, closed by a hermetically sealed vulcanite cover, save for a small perforation in a vulcanite knob in the cover, which allows any excess gases to escape. Each cell consists of 23 plates, each 5 1/2 inches wide by 7 1/2 inches high, and about 1/8 inch thick, and a complete cell with 23 plates, fork separators and dilute acid, inclosed in the vulcanite cell, weighs 40 pounds. The 200 cells with which the "Electron" is equipped therefore weigh four tons.

The 200 accumulator cells are arranged in the boat, some in the bottom, others under the forward deck, and the remainder under and back of the seats, which extend along both sides of the cabin. All of the cells are arranged so as to be accessible for inspection, should it be occasionally required.

The Western Electrician, September 7, 1889
The Electric Yacht "Electron."
Several days ago the new electrical yacht "Electron," made her trial trip in New York harbor. This tidy little boat was built by J. M. Bigler, a boat builder of Newburg, N. Y., who is very much interested in electrical matters.

The "Electron" is 36 feet in length by 3 1/2 feet draught. Her motive power is furnished by 200 storage batteries stowed away in the cabin lockers. The cells proper are sealed, and are made of hard rubber. A 10 horse motor made by the Electro-Dynamic company of Philadelphia drives the boat. The cells are furnished by the Electrical Accumulator company of New York city.

The port and starboard lights consist of incandescent electric lamps behind colored glass screens. These lamps are lighted by the touch of a button in the wheel house. The trial trip was a most successful one, and lasted just three hours and fifteen minutes. Twenty-eight miles was the total distance traveled. With the outfit described and the cells fully charged, it is claimed the boat can make about 80 miles at an average speed of eight miles an hour.

Wish I could find a pic of Electron... but here's James:
James_Bigler.jpg

James wasn't really a boat builder. He made his money with a saw mill as a lumber merchant. Did other things too like start up the local phone company. He only ended up owning a ship yard `cause a local yard had a fire then went bankrupt owing him money. At 27 tons the Electron was a bit of a toy boat too, as the yard mostly built much more substantial 700-800 ton steam ferries and yachts. After only building a few ships from 1885-1887 he sold the yard to Collis Potter Huntington (a railroad man - think Chesapeake and Ohio Railway) and Huntington moved the whole yard to Newport News to help build his new "Chesapeake Dry Dock & Construction Company". Huntington lost millions on that venture before he died in 1900 but the yard outlived him to become Newport News Shipbuilding (today Huntington Ingalls Industries via Northrop Grumman...)

1889 wasn't a complete success for electric boats...

The same issue that The Electrical World had this nice report about the Electron, they had another report of an electric boat in Spain:
The Collapse of the Peral Electric Submarine Boat.

It is all up with the submarine electrical torpedo boat, with which Isaac Peral, a Spanish naval officer, has long been threatening to revolutionize modern marine warfare. At the final trial, about three weeks ago reports the New York Sun, the machinery and batteries collapsed and the boat went to the bottom like a chunk of lead, almost carrying down with it the inventor and his venturesome assistants. Peral began his experiments in naval architecture some time ago with a flourish of trumpets. In Cadiz, last winter, he made several partial trials of his new machinery. These trials were fairly successful and he became famous. His name was in every one's mouth. The Imparcial, the leading Spanish daily, named him "the greatest man of the nineteenth century." Other dailies and many naval officers said his invention would enable Spain to regain her old supremacy of the seas. The Government appropriated 200,000 francs, subsequently increased in one way and another to 1,000,000 francs, to aid him in completing his work. Senor Casado, a South American Spaniard, added to this 500,000 francs out of his own pocket. In Madrid Peral was the man of the hour. Peral societies, Peral cigars, Peral cordials, Peral waltzes and Peral cravats monopolized the favor of all. The first trial of the boat took place last March, in the presence of thousands. It was a fizzle. Peral said the machinery was too weak, and sent it back to England, where it had been constructed under his supervision, to be remodeled.

In June the machinery was returned, and early in August all the big Spaniards of Cadiz and Madrid were invited to attend Peral's triumph. Peral, several officers, and a crew put out into the harbor in the famous craft, which is described as resembling in appearance an enormous cigar. Everything about her was close and smooth. The boat floated about 300 feet, and the crowds at the docks shouted deliriously. Just as every one was expecting her to dive under water, however, her whole electrical apparatus began to run in a most unaccountable fashion. Two or three things exploded with tremendous force. The big cigar trembled a minute, and the frightened crowd was still. Then came a volley of loud reports like the rattle of musketry, the hatches of the boat were thrown open, and Peral, officers and crew tumbled out into the water. From the open hatches issued flames, smoke and fine bits of machinery. Two minutes later the big cigar rolled over and disappeared. The men who had risked their lives in her hold were picked up by rowboats.

Three days after the catastrophe Senor Casado arrived in Cadiz from South America to see what kind of a craft his 500,000 francs had enabled Peral to build. He couldn't find even the wreck.
Peral_1888.jpg

oh well...

CORRECTION:

The Electrical World, September 14, 1889
The Peral Submarine Boat.
Last week the New York Sun had an article, from which we quoted, alleging that the Peral electric submarine boat had proved a fizzle, and had sunk in Cadiz harbor while being tested before a gathering of Spanish dignitaries. The Sun now states, however, that there was no foundation for the story it published, but that on the contrary the boat has withstood a series of severe experimental tests, and "appears to be one of the most extraordinary developments in scientific naval warfare." If this be true, as we hope it is, Senor Peral will no doubt receive his due in praise and in more substantial recompense.
 
Seen here:
http://theoldmotor.com/?p=35085
Gebhardt&Harhorn_1910sml.jpg
...Geha, a German electrical car built by Gebhardt & Harhorn in Berlin from 1910 to 1914.

The 3PS (3 HP) model was powered by an electrical motor located in the front wheel axel. According to Halwart Schrader in his Deutsche Autos 1885-1920 (Motor Buch Verlag, 2002) the maximum speed was about 25km/h with about 80 km range.

The designer of the car was Victor Harhorn.

After WWI, the company was bought by Elitewerke AG, and the Geha car was sold under the name of “Das elektrische Pferd” : the electric horse !
 
Back
Top